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Diversity in NP:
® Primes is solvable in polynomial-time.
e Glis solvable in quasi-polynomial time (O(n'°¢ ")).

® |ndSet is solvable in O(1.1996").

@ Hardest problems in NP

NPC problem is in P = Every problem in NP is in P.
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Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

Fact: Suppose L) <, L,. It L, is not polytime decidable, then so is L.
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Defn: (1) A decision problem L is called NP-hard it L’ <, L, for every L' € NP.
(2) An NP-hard decision problem L is called NP-complete it L € NP.

Observation: It L is polytime solvable, then so is every problem in NP.
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Cook-Levin Theorem [Co071, Lev73]:
1) SAT is NP-complete.

2) 3SAT is NP-complete.

SAT = {@| ¢ is a satistiable CNF formula}
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Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()

Examples: ¢1 — l/tl N\ _'l/il , ¢2 — (l/tl V I/tz) A\ (I/l3 N\ _'M4)

Let ¢ be a boolean formula over u, u,,...,u, and z € {0,1}":

® ()(z) denotes the value of ¢ when u; = z..

® ¢ is satisfiable if 4z such that ¢p(z) = 1. Otherwise, ¢ is unsatisfiable.

Examples: ¢, is unsatisfiable, ¢, is satistiable as ¢,(z) = 1, for z = 1010.
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SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form ot AND of ORs of variables or negation

of variables.
Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)
\ / [

Literals Clause

Definition: 1) SAT = {¢@ | @ is a satisfiable CNF formula}
2) 3SAT = {¢| ¢ is a satisfiable 3CNF formula}

v At most 3 literals per clause



