Lecture 34

Reductions, NP-complete



NP-Completeness



NP-Completeness

Diversity in NP:



NP-Completeness

Diversity in NP:

® Primes is solvable in polynomial-time.



NP-Completeness

Diversity in NP:
® Primes is solvable in polynomial-time.

® Glis solvable in quasi-polynomial time (O(n'°g ™)),



NP-Completeness

Diversity in NP:
® Primes is solvable in polynomial-time.
e Glis solvable in quasi-polynomial time (O(n'°¢ ")).

® |ndSet is solvable in O(1.1996").



NP-Completeness

Diversity in NP:
® Primes is solvable in polynomial-time.
® Glis solvable in quasi-polynomial time (On'°gmy).

® |ndSet is solvable in O(1.1996").



NP-Completeness

Diversity in NP:
® Primes is solvable in polynomial-time.
® Glis solvable in quasi-polynomial time (On'°gmy).

® |ndSet is solvable in O(1.1996").



NP-Completeness

Diversity in NP:
® Primes is solvable in polynomial-time.
e Glis solvable in quasi-polynomial time (O(n'°¢ ")).

® |ndSet is solvable in O(1.1996").

@ Hardest problems in NP



NP-Completeness

Diversity in NP:
® Primes is solvable in polynomial-time.
e Glis solvable in quasi-polynomial time (O(n'°¢ ")).

® |ndSet is solvable in O(1.1996").

@ Hardest problems in NP



NP-Completeness

Diversity in NP:
® Primes is solvable in polynomial-time.
e Glis solvable in quasi-polynomial time (O(n'°¢ ")).

® |ndSet is solvable in O(1.1996").

@ Hardest problems in NP

NPC problem is in P = Every problem in NP is in P.



NP-Completeness

To understand NP-completeness we need to first learn about Reductions.



Reductions



Reductions

A decision problem L, is polytime reducible to a decision problem L,,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
if 3 a polytime algorithm A, such that Vx € {0,1}%,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
if 3 a polytime algorithm A, such that Vx € {0,1}%,

x €L,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
if 3 a polytime algorithm A, such that Vx € {0,1}%,

xel, = Akx) €L,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
if 3 a polytime algorithm A, such that Vx € {0,1}%,

xel, = Akx) €L,
X & L,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
if 3 a polytime algorithm A, such that Vx € {0,1}%,

xel, = Akx) €L,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
if 3 a polytime algorithm A, such that Vx € {0,1}%,

xel, = Akx) €L,

\

Output of A on input x



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,

N



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,

_



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,

—/



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,

-

[~



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,

-

[~

S



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,

-

- L
)

A



Reductions

A decision problem L, is polytime reducible to a decision problem L,, denoted by L, < L,
it 3 a polytime algorithm A, such that Vx € {0,1}%,

xelL, < Akx)el,

_

~'

I

1\
A



Reductions



Reductions

We can decide L, in polytime,



Reductions

We can decide L, in polytime, it we know that L; < L, via A



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Input x —»

Polytime Algorithm A, for L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Input x —» —>

Polytime Algorithm A, for L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

A(x)
Input x —|—> —_—

Polytime Algorithm A, for L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Input x —» —>

Polytime Algorithm A, for L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

x €L



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

xeL, — Akx) €L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

xel, = Akx)el, — A,outputs] onA(x)



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

xel, = Ax)el, =— A,outputsl onA(x) =— A, outputsl



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

xel, = Ax)el, =— A,outputsl onA(x) =— A, outputsl
X & L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

xel, = Ax)el, =— A,outputsl onA(x) =— A, outputsl
x&L, — Ax) &L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

xel, = Ax)el, =— A,outputsl onA(x) =— A, outputsl

x&gL, —= Ax)€&€L, — A, outputs(on A(x)



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

xel, = Ax)el, =— A,outputsl onA(x) =— A, outputsl

x&L, = Ax)€&€L, =— A,outputsOonA(x) = A, outputs(



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

Fact: Suppose L| <, L.



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

Fact: Suppose L) <, L,. It L, is decidable in polytime, then so is L.



Reductions

We can decide L; in polytime, it we know that L; <, L, via A and L, is decidable by a
polytime algorithm A,.

Polytime Algorithm A, for L,

Fact: Suppose L) <, L,. It L, is not polytime decidable, then so is L.



NP-Completeness and NP-Hardness




NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called NP-hard it L’ <, L, for every L' € NP.



NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called NP-hard it L’ <, L, for every L' € NP.



NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called NP-hard it L’ <, L, for every L' € NP.



NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called NP-hard it L’ <, L, for every L' € NP.
(2) An NP-hard decision problem L is called NP-complete it L € NP.



NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called NP-hard it L’ <, L, for every L' € NP.
(2) An NP-hard decision problem L is called NP-complete it L € NP.

Observation: It L is polytime solvable, then so is every problem in NP.



NP-Completeness and NP-Hardness




NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.

Proof:



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.
Proof: L € P— NP CP:



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.
Proof: L € P— NP CP:

Let " € NP.



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.
Proof: L € P— NP CP:

Let L" € NP. Then L’ <, L because L is NP-complete.



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.
Proof: L € P— NP CP:

Let L € NP. Then L’ <, L because L is NP-complete. Hence, L' € P.



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.
Proof: L € P— NP CP:

Let L € NP. Then L’ <, L because L is NP-complete. Hence, L' € P.
P=NP — L eP:



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.
Proof: L € P— NP CP:

Let L € NP. Then L’ <, L because L is NP-complete. Hence, L' € P.
P=NP — L eP:

L € NP because it is NP-complete.



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.
Proof: L € P— NP CP:

Let L € NP. Then L’ <, L because L is NP-complete. Hence, L' € P.
P=NP — L eP:

L € NP because it is NP-complete. Therefore, L € P.



NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then L € P it and only if P = NP.
Proof: L € P— NP CP:

Let L € NP. Then L’ <, L because L is NP-complete. Hence, L' € P.
P=NP — L eP:

L € NP because it is NP-complete. Therefore, L € P.



Cook-Levin Theorem



Cook-Levin Theorem

Cook-Levin Theorem [Co071, Lev73]:



Cook-Levin Theorem

Cook-Levin Theorem [Co071, Lev73]:
1) SAT is NP-complete.



Cook-Levin Theorem

Cook-Levin Theorem [Co071, Lev73]:
1) SAT is NP-complete.

2) 3SAT is NP-complete.



Cook-Levin Theorem

Cook-Levin Theorem [Co071, Lev73]:
1) SAT is NP-complete.

2) 3SAT is NP-complete.

SAT = {@| ¢ is a satistiable CNF formula}



Cook-Levin Theorem

Cook-Levin Theorem [Co071, Lev73]:
1) SAT is NP-complete.

2) 3SAT is NP-complete.

SAT = {@| ¢ is a satistiable CNF formula}

3SAT = {¢@|¢ is a satisfiable 3CNF formula}



Boolean Formulas




Boolean Formulas

A boolean formula consists of:



Boolean Formulas

A boolean formula consists of:

® Variables: uy, u,, ..., u,, where u, € {0,1}.



Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()



Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()

Examples: ¢, = u; A Ty,



Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()

Examples: ¢1 — l/tl N\ _'l/il , ¢2 — (l/tl V I/tz) A\ (I/l3 N\ _'I/t4)



Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()

Examples: ¢1 — l/tl N\ _'l/il , ¢2 — (l/tl V I/tz) A\ (I/l3 N\ _'I/t4)

Let ¢ be a boolean formula over u, u,,...,u, and z € {0,1}":



Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()

Examples: ¢1 — l/tl N\ _'l/il , ¢2 — (l/tl V I/tz) A\ (I/l3 N\ _'I/t4)

Let ¢ be a boolean formula over u, u,,...,u, and z € {0,1}":

® ()(z) denotes the value of ¢ when u; = z..



Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()

Examples: ¢1 — l/tl N\ _'l/il , ¢2 — (l/tl V I/tz) A\ (I/l3 N\ _'M4)

Let ¢ be a boolean formula over u, u,,...,u, and z € {0,1}":

® ()(z) denotes the value of ¢ when u; = z.

® ¢ is satisfiable if 4z such that ¢p(z) = 1. Otherwise, ¢ is unsatisfiable.



Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()

Examples: ¢1 — l/tl N\ _'l/il , ¢2 — (l/tl V I/tz) A\ (I/l3 N\ _'M4)

Let ¢ be a boolean formula over u, u,,...,u, and z € {0,1}":

® ()(z) denotes the value of ¢ when u; = z..

® ¢ is satisfiable if 4z such that ¢p(z) = 1. Otherwise, ¢ is unsatisfiable.

Examples: ¢, is unsatisfiable,



Boolean Formulas

A boolean formula consists of:
® Variables: uy, u,, ..., u,, where u, € {0,1}.

® Operators: AND (A ), OR(V), NOT ()

Examples: ¢1 — l/tl N\ _'l/il , ¢2 — (l/tl V I/tz) A\ (I/l3 N\ _'M4)

Let ¢ be a boolean formula over u, u,,...,u, and z € {0,1}":

® ()(z) denotes the value of ¢ when u; = z..

® ¢ is satisfiable if 4z such that ¢p(z) = 1. Otherwise, ¢ is unsatisfiable.

Examples: ¢, is unsatisfiable, ¢, is satistiable as ¢,(z) = 1, for z = 1010.



SAT and 3SAT



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form ot AND of ORs of variables or negation



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form ot AND of ORs of variables or negation
of variables.



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AN

of variables.

Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)

D of ORs of variables or negation



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AN

of variables.

Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)

\ /7

Literals

D of ORs of variables or negation



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AN

of variables.
Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)

\/

Literals

D of ORs of variables or negation



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AN

of variables.
Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)
\ / [

Literals

D of ORs of variables or negation



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AN

of variables.
Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)
\ / [

Literals Clause

D of ORs of variables or negation



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AN

of variables.

Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)
\ / [

Literals Clause

Definition: 1) SAT = {¢ | ¢ is a satisfiable CNF formula}

D of ORs of variables or negation



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AN

of variables.
Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)
\ / [

Literals Clause

Definition: 1) SAT = {¢ | ¢ is a satisfiable CNF formula}
2) 3SAT = {¢| ¢ is a satisfiable 3CNF formula}

D of ORs of variables or negation



SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form ot AND of ORs of variables or negation

of variables.
Example: («; V 7 uy V) AUz Vi, V) Ay Vug Vi)
\ / [

Literals Clause

Definition: 1) SAT = {¢@ | @ is a satisfiable CNF formula}
2) 3SAT = {¢| ¢ is a satisfiable 3CNF formula}

v At most 3 literals per clause



