
Lecture 34

Reductions, NP-complete

NP-Completeness

Diversity in NP:

NP-Completeness

Diversity in NP:

NP-Completeness

• Primes is solvable in polynomial-time.

Diversity in NP:

NP-Completeness

• Primes is solvable in polynomial-time.

• GI is solvable in quasi-polynomial time ().O(nlogc n)

Diversity in NP:

NP-Completeness

• Primes is solvable in polynomial-time.

• GI is solvable in quasi-polynomial time ().O(nlogc n)

• IndSet is solvable in .O(1.1996n)

Diversity in NP:

NP

NP-Completeness

• Primes is solvable in polynomial-time.

• GI is solvable in quasi-polynomial time ().O(nlogc n)

• IndSet is solvable in .O(1.1996n)

Diversity in NP:

NP

NPC

NP-Completeness

• Primes is solvable in polynomial-time.

• GI is solvable in quasi-polynomial time ().O(nlogc n)

• IndSet is solvable in .O(1.1996n)

Diversity in NP:

NP

Hardest problems in NPNPC

NP-Completeness

• Primes is solvable in polynomial-time.

• GI is solvable in quasi-polynomial time ().O(nlogc n)

• IndSet is solvable in .O(1.1996n)

Diversity in NP:

NP

Hardest problems in NPNPC

NP-Completeness

• Primes is solvable in polynomial-time.

• GI is solvable in quasi-polynomial time ().O(nlogc n)

• IndSet is solvable in .O(1.1996n)

Diversity in NP:

NP

Hardest problems in NPNPC

NPC problem is in P Every problem in NP is in P. ⟹

NP-Completeness

• Primes is solvable in polynomial-time.

• GI is solvable in quasi-polynomial time ().O(nlogc n)

• IndSet is solvable in .O(1.1996n)

NP-Completeness

To understand NP-completeness we need to first learn about Reductions.

Reductions

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2 denoted by , L1 ≤p L2

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2 denoted by , L1 ≤p L2

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟹ A(x) ∈ L2

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟹ A(x) ∈ L2

if a polytime algorithm ,∃ A

x ∉ L1

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟹ A(x) ∈ L2

if a polytime algorithm ,∃ A

x ∉ L1 ⟹ A(x) ∉ L2

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟹ A(x) ∈ L2

if a polytime algorithm ,∃ A

Output of on input A x

x ∉ L1 ⟹ A(x) ∉ L2

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions
A decision problem is polytime reducible to a decision problem ,L1 L2

such that ,∀x ∈ {0,1}*
denoted by , L1 ≤p L2

x ∈ L1 ⟺ A(x) ∈ L2

L1

L1

L2

L2

A

if a polytime algorithm ,∃ A

Reductions

Reductions

We can decide in polytime,L1

Reductions

We can decide in polytime,L1 if we know that via L1 ≤p L2 A

Reductions

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A

Reductions

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A
polytime algorithm .A2

Reductions

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A

Input x

Polytime Algorithm for A1 L1

polytime algorithm .A2

Reductions

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

polytime algorithm .A2

Reductions

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

x ∈ L1

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

x ∈ L1 ⟹ A(x) ∈ L2

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

x ∈ L1 ⟹ A(x) ∈ L2 outputs on ⟹ A2 1 A(x)

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

x ∈ L1 ⟹ A(x) ∈ L2 outputs on ⟹ A2 1 A(x) outputs ⟹ A1 1

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

x ∈ L1 ⟹ A(x) ∈ L2 outputs on ⟹ A2 1 A(x) outputs ⟹ A1 1

x ∉ L1

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

x ∈ L1 ⟹ A(x) ∈ L2 outputs on ⟹ A2 1 A(x) outputs ⟹ A1 1

x ∉ L1 ⟹ A(x) ∉ L2

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

x ∈ L1 ⟹ A(x) ∈ L2 outputs on ⟹ A2 1 A(x) outputs ⟹ A1 1

x ∉ L1 ⟹ A(x) ∉ L2 outputs on ⟹ A2 0 A(x)

polytime algorithm .A2

Reductions

We can decide in polytime,L1

A2

and is decidable by aL2if we know that via L1 ≤p L2 A

AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

x ∈ L1 ⟹ A(x) ∈ L2 outputs on ⟹ A2 1 A(x) outputs ⟹ A1 1

x ∉ L1 ⟹ A(x) ∉ L2 outputs on ⟹ A2 0 A(x) outputs ⟹ A1 0

polytime algorithm .A2

Reductions

A2AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A
polytime algorithm .A2

Reductions

A2AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

Fact: Suppose .L1 ≤p L2

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A
polytime algorithm .A2

Reductions

A2AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

Fact: If is decidable in polytime, then so is .L2 L1Suppose .L1 ≤p L2

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A
polytime algorithm .A2

Reductions

A2AInput x

Polytime Algorithm for A1 L1

A(x)
1

0

Fact: If is not polytime decidable, then so is .L1 L2Suppose .L1 ≤p L2

We can decide in polytime,L1 and is decidable by aL2if we know that via L1 ≤p L2 A
polytime algorithm .A2

NP-Completeness and NP-Hardness

NP-Completeness and NP-Hardness

Defn: A decision problem is called NP-hard if , for every NP.(1) L L′￼ ≤p L L′￼ ∈

NP-Completeness and NP-Hardness

Defn: A decision problem is called NP-hard if , for every NP.(1) L L′￼ ≤p L L′￼ ∈

NP

NP-Completeness and NP-Hardness

Defn: A decision problem is called NP-hard if , for every NP.(1) L L′￼ ≤p L L′￼ ∈

NP ≤p L

NP-Completeness and NP-Hardness

Defn: A decision problem is called NP-hard if , for every NP.(1) L L′￼ ≤p L L′￼ ∈
 An NP-hard decision problem is called NP-complete if NP.(2) L L ∈

NP ≤p L

NP-Completeness and NP-Hardness

Defn: A decision problem is called NP-hard if , for every NP.(1) L L′￼ ≤p L L′￼ ∈
 An NP-hard decision problem is called NP-complete if NP.(2) L L ∈

NP ≤p L

Observation: If is polytime solvable, then so is every problem in NP.L

NP-Completeness and NP-Hardness

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof:

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof: P NP P:L ∈ ⟹ ⊆

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof:

Let NP.L′￼ ∈

P NP P:L ∈ ⟹ ⊆

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof:

Let NP.L′￼ ∈

P NP P:L ∈ ⟹ ⊆

Then because is NP-complete.L′￼ ≤p L L

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof:

Let NP.L′￼ ∈

P NP P:L ∈ ⟹ ⊆

Then because is NP-complete.L′￼ ≤p L L Hence, P.L′￼ ∈

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof:

Let NP.L′￼ ∈

P NP P:= ⟹ L ∈

P NP P:L ∈ ⟹ ⊆

Then because is NP-complete.L′￼ ≤p L L Hence, P.L′￼ ∈

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof:

Let NP.L′￼ ∈

P NP P:= ⟹ L ∈

 NP because it is NP-complete.L ∈

P NP P:L ∈ ⟹ ⊆

Then because is NP-complete.L′￼ ≤p L L Hence, P.L′￼ ∈

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof:

Let NP.L′￼ ∈

P NP P:= ⟹ L ∈

 NP because it is NP-complete.L ∈

P NP P:L ∈ ⟹ ⊆

Then because is NP-complete.L′￼ ≤p L L Hence, P.L′￼ ∈

Therefore, P.L ∈

NP-Completeness and NP-Hardness

Claim: If a decision problem is NP-complete, then P if and only if P NP.L L ∈ =
Proof:

Let NP.L′￼ ∈

P NP P:= ⟹ L ∈

 NP because it is NP-complete.L ∈

P NP P:L ∈ ⟹ ⊆

Then because is NP-complete.L′￼ ≤p L L Hence, P.L′￼ ∈

Therefore, P.L ∈

Cook-Levin Theorem

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:
 SAT is NP-complete.1)

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:
 SAT is NP-complete.1)
 3SAT is NP-complete.2)

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:
 SAT is NP-complete.1)
 3SAT is NP-complete.2)

SAT is a satisfiable CNF formula= {ϕ |ϕ }

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:
 SAT is NP-complete.1)
 3SAT is NP-complete.2)

SAT is a satisfiable CNF formula= {ϕ |ϕ }

3SAT is a satisfiable 3CNF formula= {ϕ |ϕ }

Boolean Formulas

A boolean formula consists of:

Boolean Formulas

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

Boolean Formulas

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT (∧) (∨) (¬)

Boolean Formulas

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT (∧) (∨) (¬)

Boolean Formulas

Examples: ϕ1 = u1 ∧ ¬u1

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT (∧) (∨) (¬)

Boolean Formulas

Examples: ϕ1 = u1 ∧ ¬u1 , ϕ2 = (u1 ∨ u2) ∧ (u3 ∧ ¬u4)

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT (∧) (∨) (¬)

Boolean Formulas

Examples: ϕ1 = u1 ∧ ¬u1

Let be a boolean formula over and :ϕ u1, u2, …, un z ∈ {0,1}n

, ϕ2 = (u1 ∨ u2) ∧ (u3 ∧ ¬u4)

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT (∧) (∨) (¬)

Boolean Formulas

Examples: ϕ1 = u1 ∧ ¬u1

Let be a boolean formula over and :ϕ u1, u2, …, un z ∈ {0,1}n

• denotes the value of when .ϕ(z) ϕ ui = zi

, ϕ2 = (u1 ∨ u2) ∧ (u3 ∧ ¬u4)

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT (∧) (∨) (¬)

Boolean Formulas

Examples: ϕ1 = u1 ∧ ¬u1

Let be a boolean formula over and :ϕ u1, u2, …, un z ∈ {0,1}n

• denotes the value of when .ϕ(z) ϕ ui = zi

• is satisfiable if such that . Otherwise, is unsatisfiable.ϕ ∃z ϕ(z) = 1 ϕ

, ϕ2 = (u1 ∨ u2) ∧ (u3 ∧ ¬u4)

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT (∧) (∨) (¬)

Boolean Formulas

Examples: ϕ1 = u1 ∧ ¬u1

Let be a boolean formula over and :ϕ u1, u2, …, un z ∈ {0,1}n

• denotes the value of when .ϕ(z) ϕ ui = zi

• is satisfiable if such that . Otherwise, is unsatisfiable.ϕ ∃z ϕ(z) = 1 ϕ

Examples: is unsatisfiable, ϕ1

, ϕ2 = (u1 ∨ u2) ∧ (u3 ∧ ¬u4)

A boolean formula consists of:

• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT (∧) (∨) (¬)

Boolean Formulas

Examples: ϕ1 = u1 ∧ ¬u1

Let be a boolean formula over and :ϕ u1, u2, …, un z ∈ {0,1}n

• denotes the value of when .ϕ(z) ϕ ui = zi

• is satisfiable if such that . Otherwise, is unsatisfiable.ϕ ∃z ϕ(z) = 1 ϕ

Examples: is unsatisfiable, ϕ1 is satisfiable as , for .ϕ2 ϕ2(z) = 1 z = 1010

, ϕ2 = (u1 ∨ u2) ∧ (u3 ∧ ¬u4)

SAT and 3SAT

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

Example: (u1 ∨ ¬u2 ∨ u3) ∧ (u3 ∨ u2 ∨ ¬u1) ∧ (u2 ∨ ¬u3 ∨ u4)

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

Literals

Example: (u1 ∨ ¬u2 ∨ u3) ∧ (u3 ∨ u2 ∨ ¬u1) ∧ (u2 ∨ ¬u3 ∨ u4)

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

Literals

Example: (u1 ∨ ¬u2 ∨ u3) ∧ (u3 ∨ u2 ∨ ¬u1) ∧ (u2 ∨ ¬u3 ∨ u4)

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

Literals

Example: (u1 ∨ ¬u2 ∨ u3) ∧ (u3 ∨ u2 ∨ ¬u1) ∧ (u2 ∨ ¬u3 ∨ u4)

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

Literals Clause

Example: (u1 ∨ ¬u2 ∨ u3) ∧ (u3 ∨ u2 ∨ ¬u1) ∧ (u2 ∨ ¬u3 ∨ u4)

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

Literals Clause

Example: (u1 ∨ ¬u2 ∨ u3) ∧ (u3 ∨ u2 ∨ ¬u1) ∧ (u2 ∨ ¬u3 ∨ u4)

Definition: SAT is a satisfiable CNF formula1) = {ϕ |ϕ }

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

Literals Clause

Example: (u1 ∨ ¬u2 ∨ u3) ∧ (u3 ∨ u2 ∨ ¬u1) ∧ (u2 ∨ ¬u3 ∨ u4)

Definition: SAT is a satisfiable CNF formula1) = {ϕ |ϕ }
 3SAT is a satisfiable 3CNF formula2) = {ϕ |ϕ }

SAT and 3SAT

Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
of variables.

At most 3 literals per clause

Literals Clause

Example: (u1 ∨ ¬u2 ∨ u3) ∧ (u3 ∨ u2 ∨ ¬u1) ∧ (u2 ∨ ¬u3 ∨ u4)

Definition: SAT is a satisfiable CNF formula1) = {ϕ |ϕ }
 3SAT is a satisfiable 3CNF formula2) = {ϕ |ϕ }

