

Lecture 34

Reductions, NP-complete

NP-Completeness

NP-Completeness

Diversity in NP:

NP-Completeness

Diversity in NP:

- *Primes* is solvable in polynomial-time.

NP-Completeness

Diversity in NP:

- *Primes* is solvable in polynomial-time.
- *GI* is solvable in quasi-polynomial time ($O(n^{\log^c n})$).

NP-Completeness

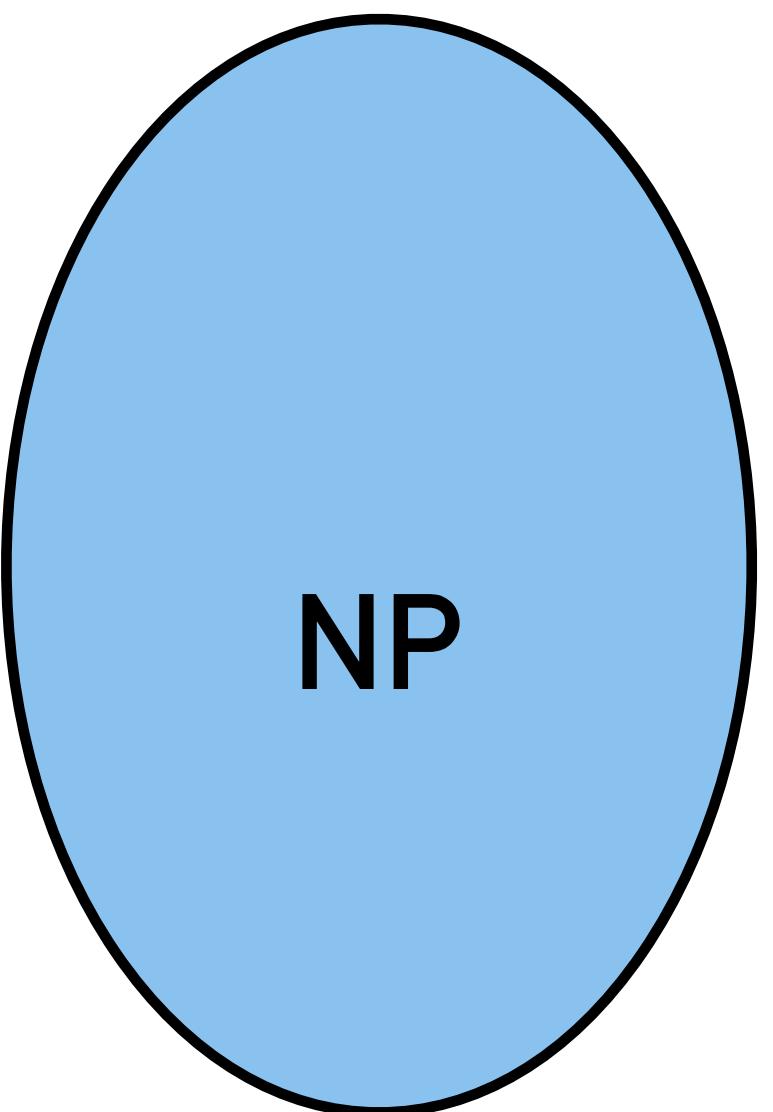
Diversity in NP:

- *Primes* is solvable in polynomial-time.
- *GI* is solvable in quasi-polynomial time ($O(n^{\log^c n})$).
- *IndSet* is solvable in $O(1.1996^n)$.

NP-Completeness

Diversity in NP:

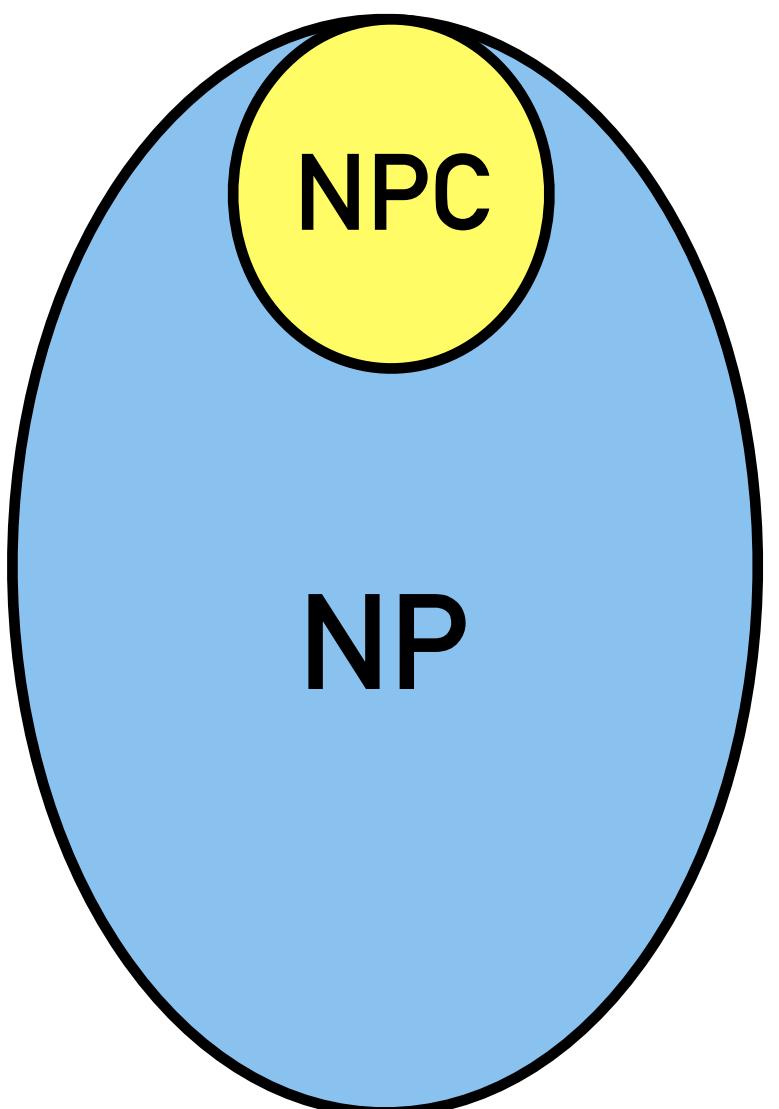
- *Primes* is solvable in polynomial-time.
- *GI* is solvable in quasi-polynomial time ($O(n^{\log^c n})$).
- *IndSet* is solvable in $O(1.1996^n)$.



NP-Completeness

Diversity in NP:

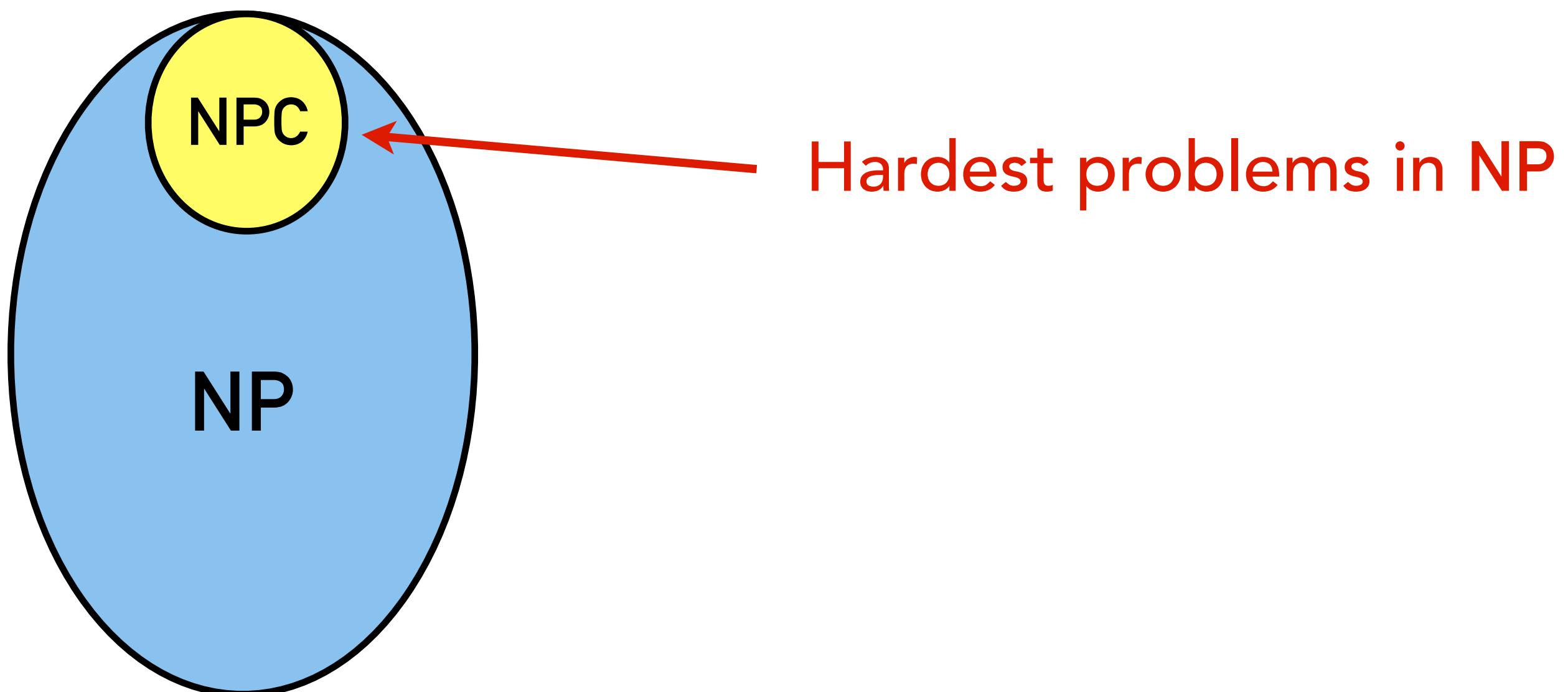
- *Primes* is solvable in polynomial-time.
- *GI* is solvable in quasi-polynomial time ($O(n^{\log^c n})$).
- *IndSet* is solvable in $O(1.1996^n)$.



NP-Completeness

Diversity in NP:

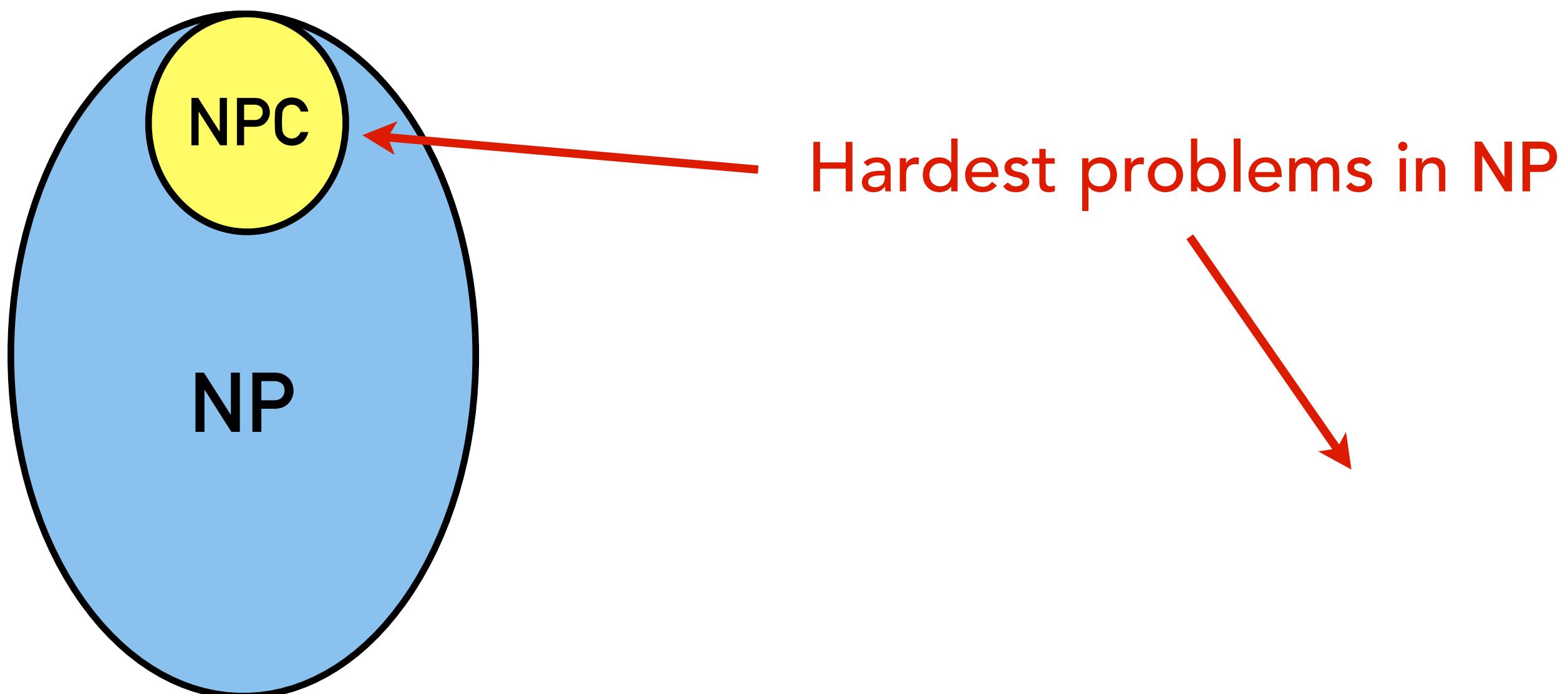
- *Primes* is solvable in polynomial-time.
- *GI* is solvable in quasi-polynomial time ($O(n^{\log^c n})$).
- *IndSet* is solvable in $O(1.1996^n)$.



NP-Completeness

Diversity in NP:

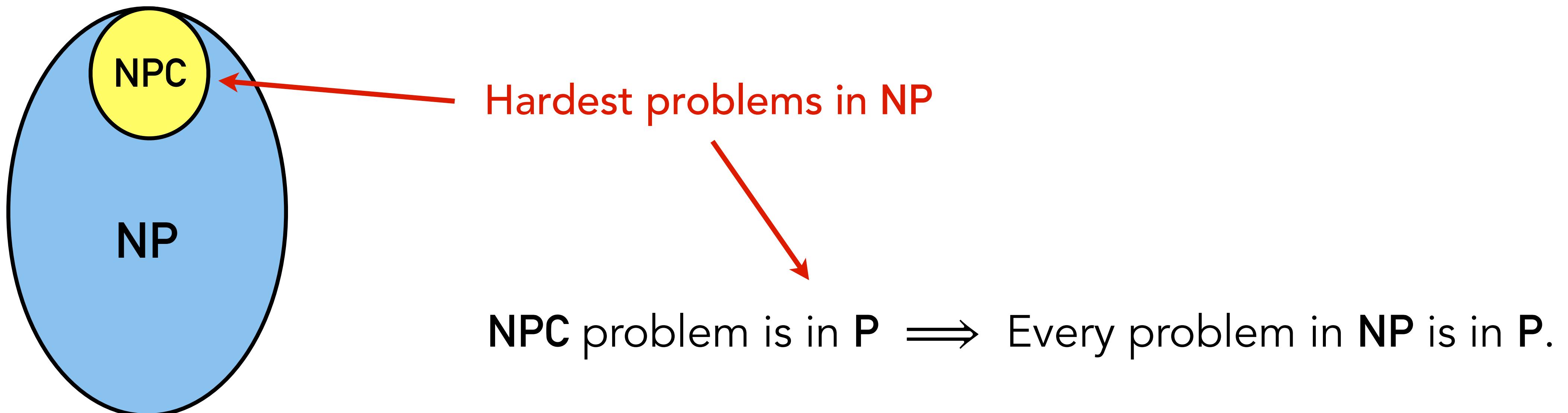
- *Primes* is solvable in polynomial-time.
- *GI* is solvable in quasi-polynomial time ($O(n^{\log^c n})$).
- *IndSet* is solvable in $O(1.1996^n)$.



NP-Completeness

Diversity in NP:

- *Primes* is solvable in polynomial-time.
- *GI* is solvable in quasi-polynomial time ($O(n^{\log^c n})$).
- *IndSet* is solvable in $O(1.1996^n)$.



NP-Completeness

To understand **NP-completeness** we need to first learn about **Reductions**.

Reductions

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 ,

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$,

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A ,

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

$$x \in L_1$$

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

$$x \in L_1 \implies A(x) \in L_2$$

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

$$x \in L_1 \implies A(x) \in L_2$$

$$x \notin L_1$$

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

$$x \in L_1 \implies A(x) \in L_2$$

$$x \notin L_1 \implies A(x) \notin L_2$$

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

$$x \in L_1 \implies A(x) \in L_2$$

$$x \notin L_1 \implies A(x) \notin L_2$$

Output of A on input x

Reductions

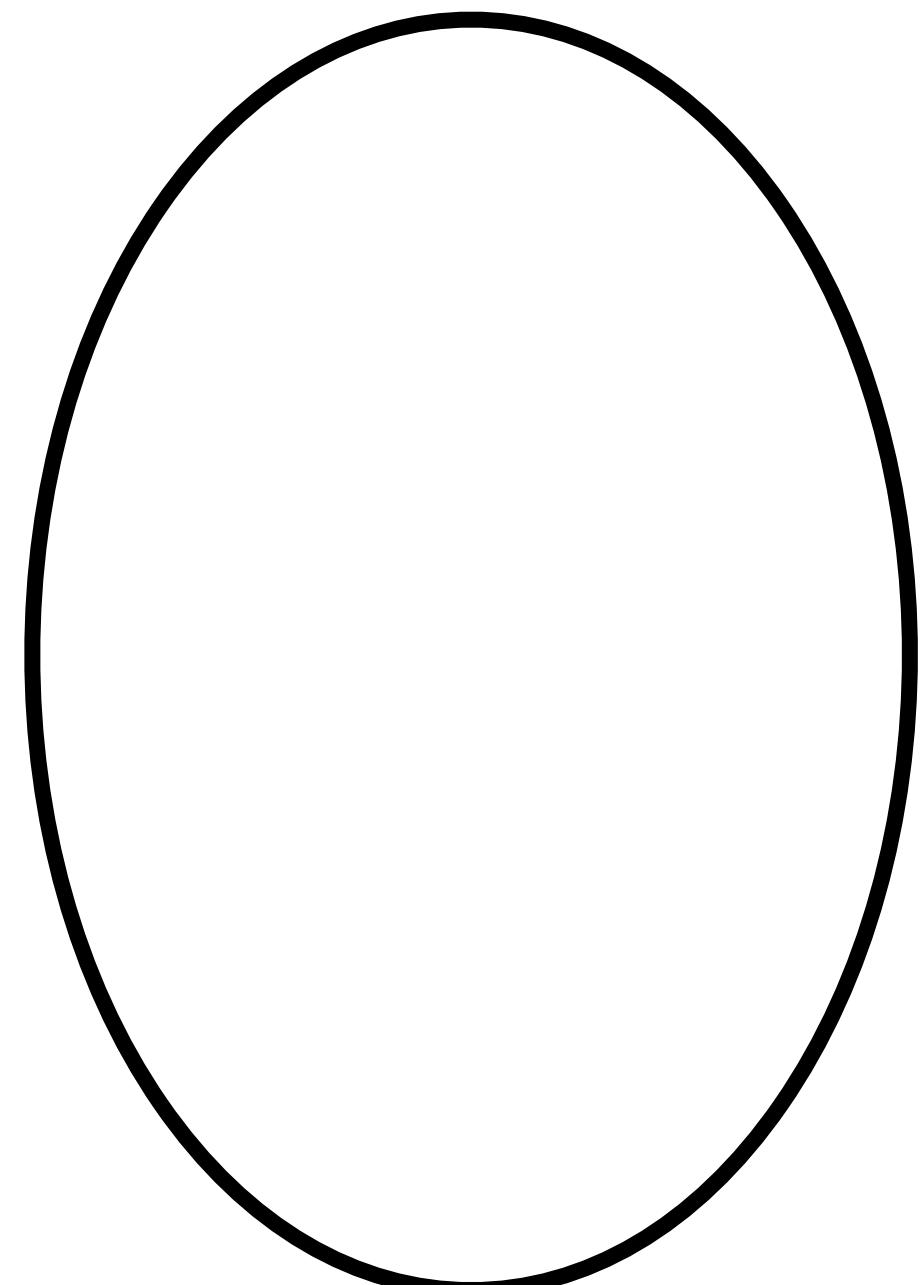
A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

$$x \in L_1 \iff A(x) \in L_2$$

Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

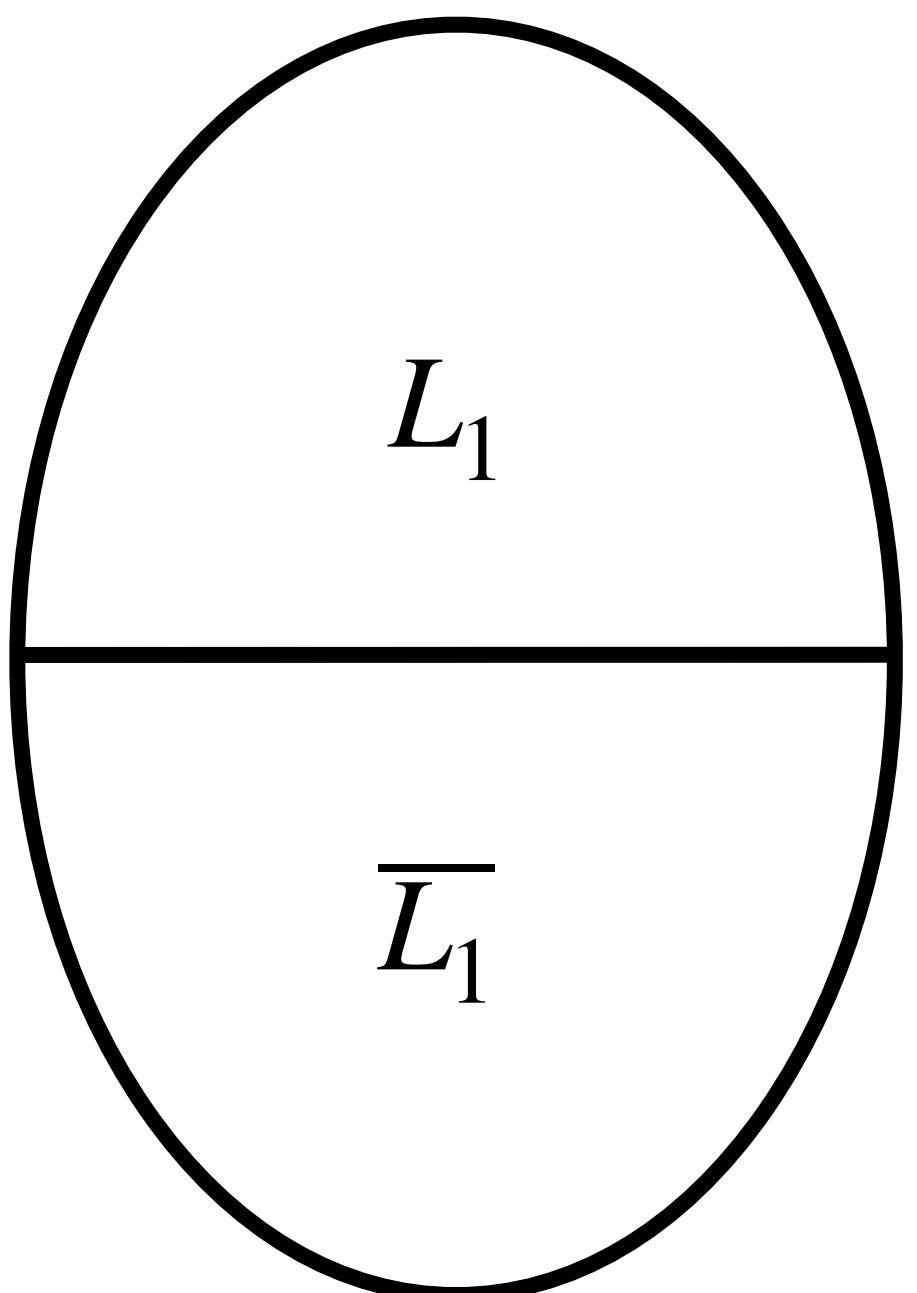
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

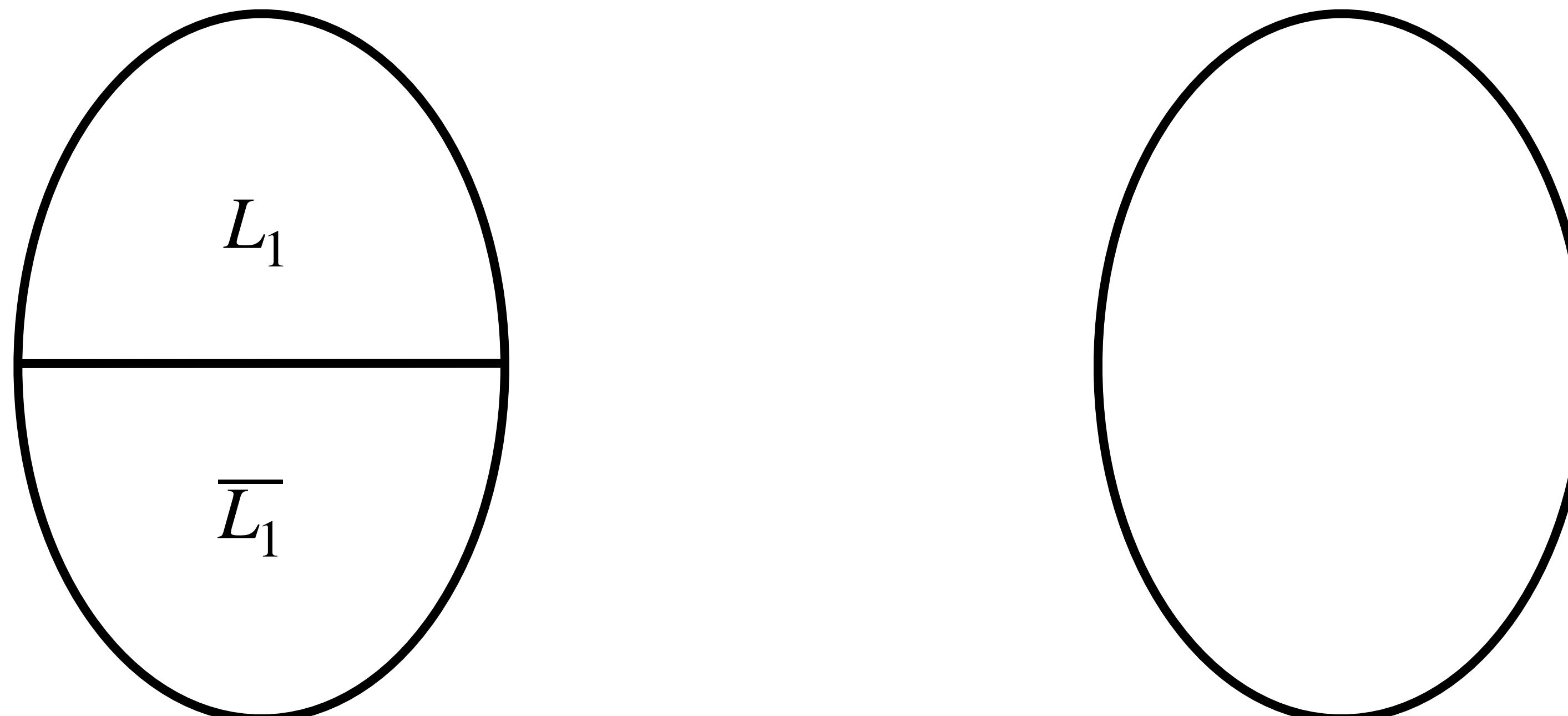
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

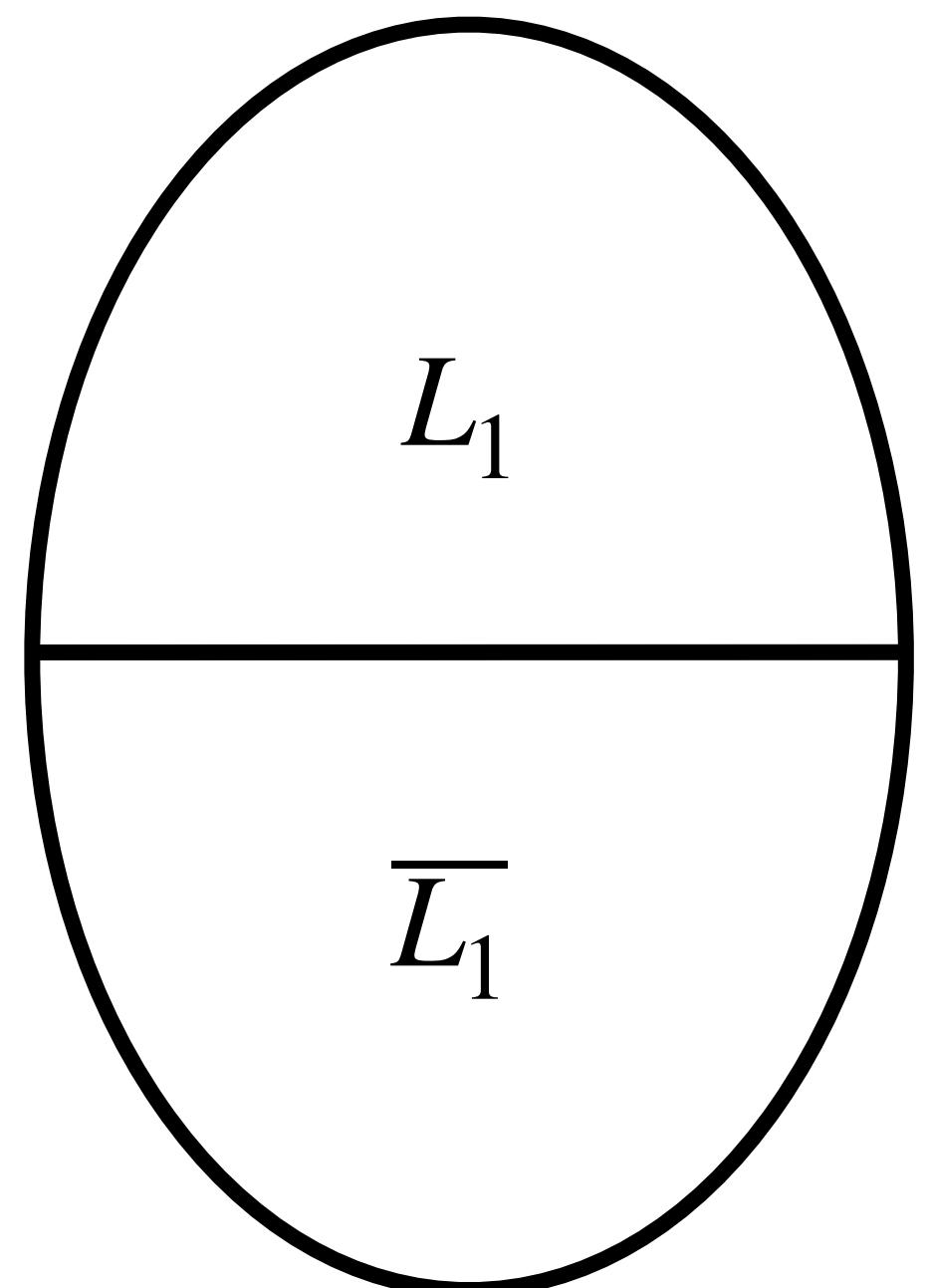
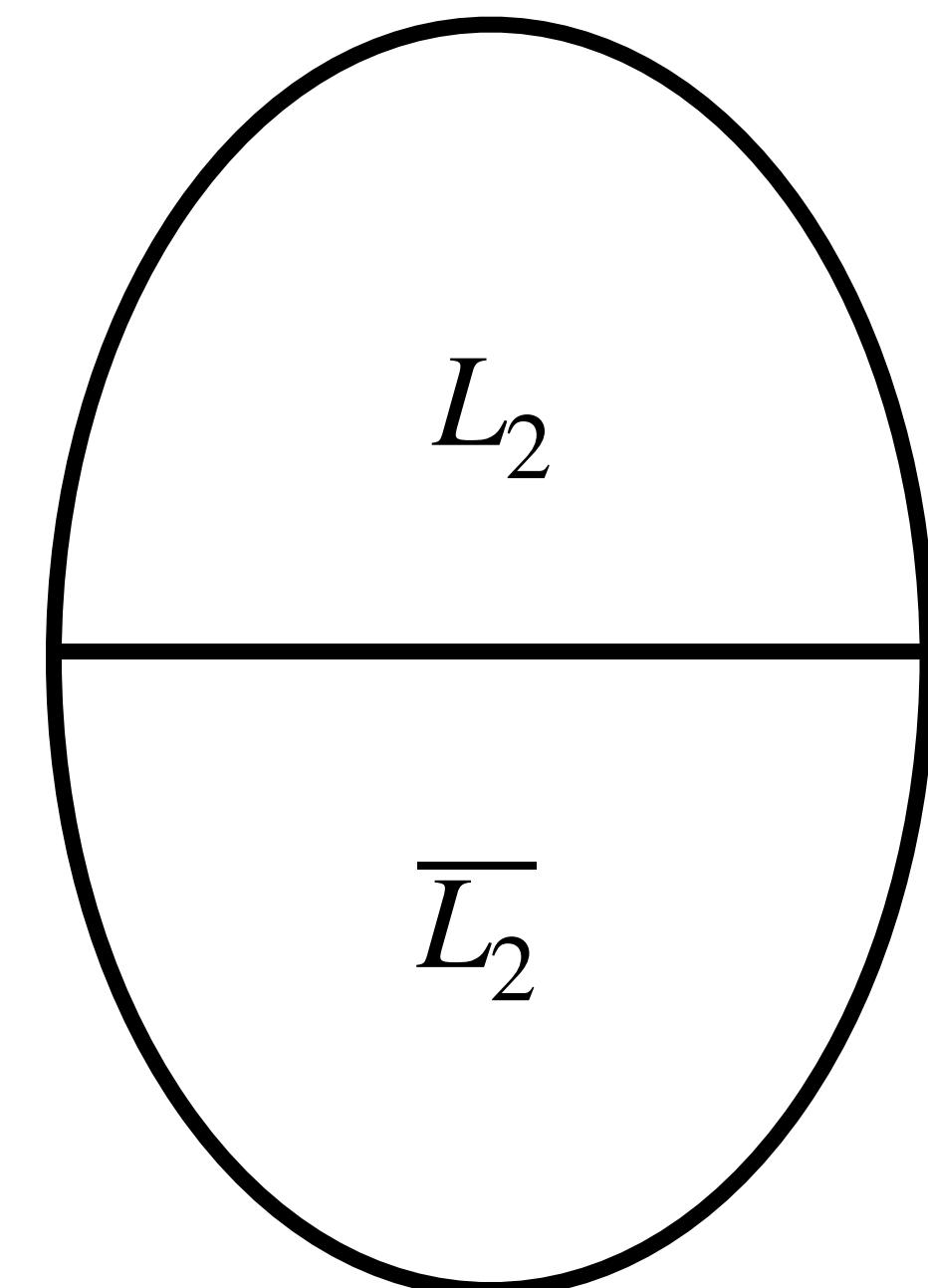
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

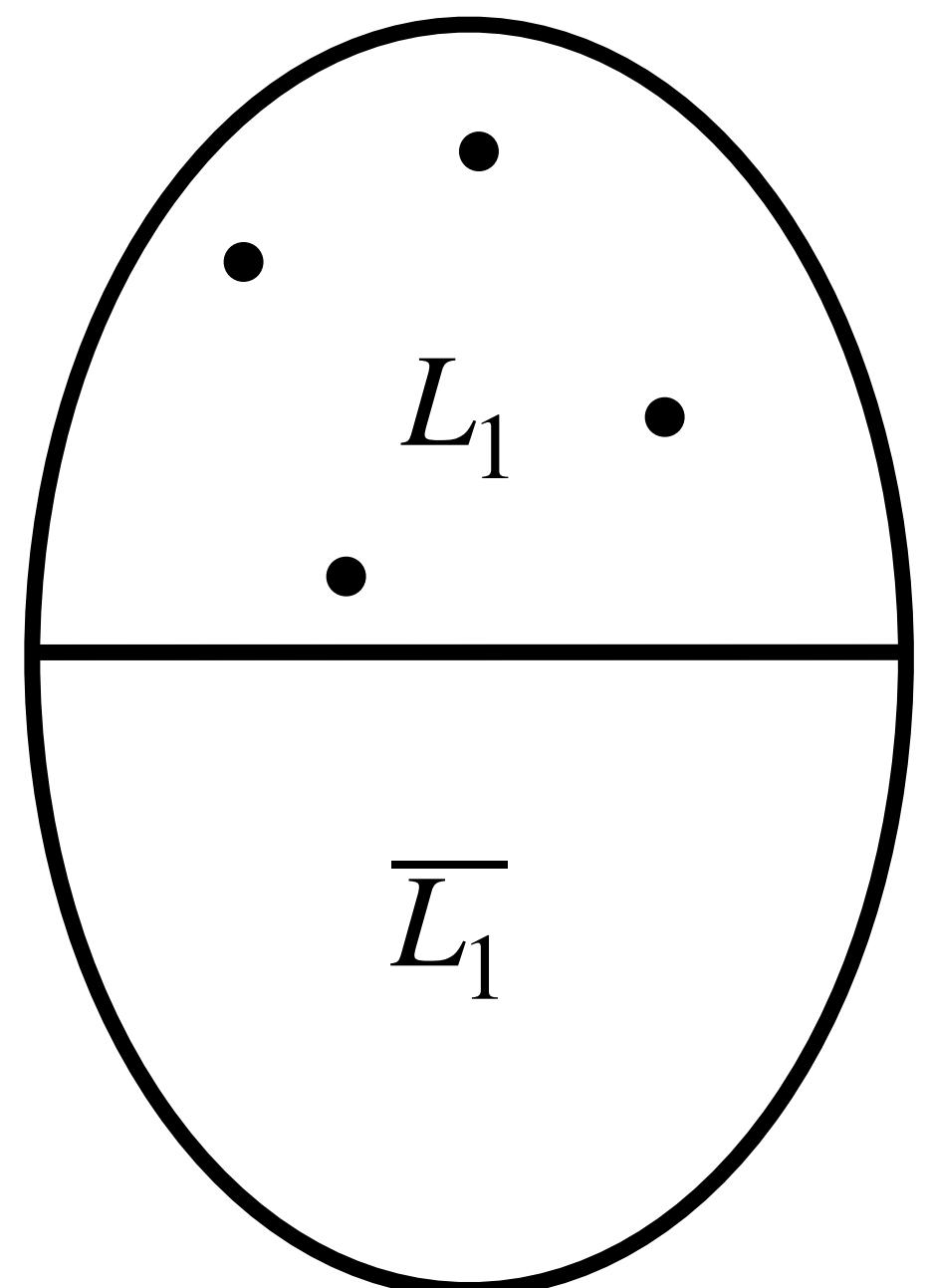
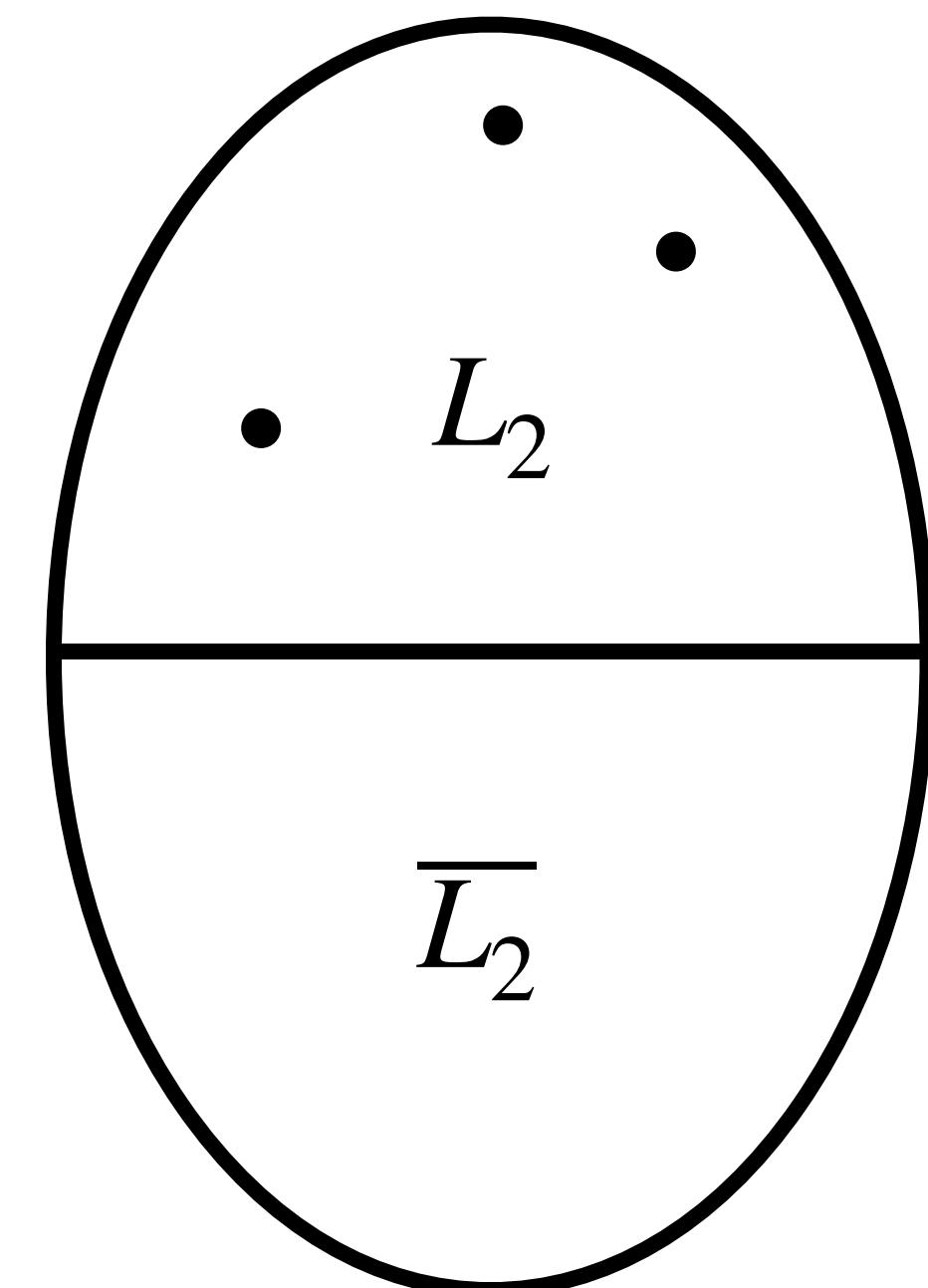
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

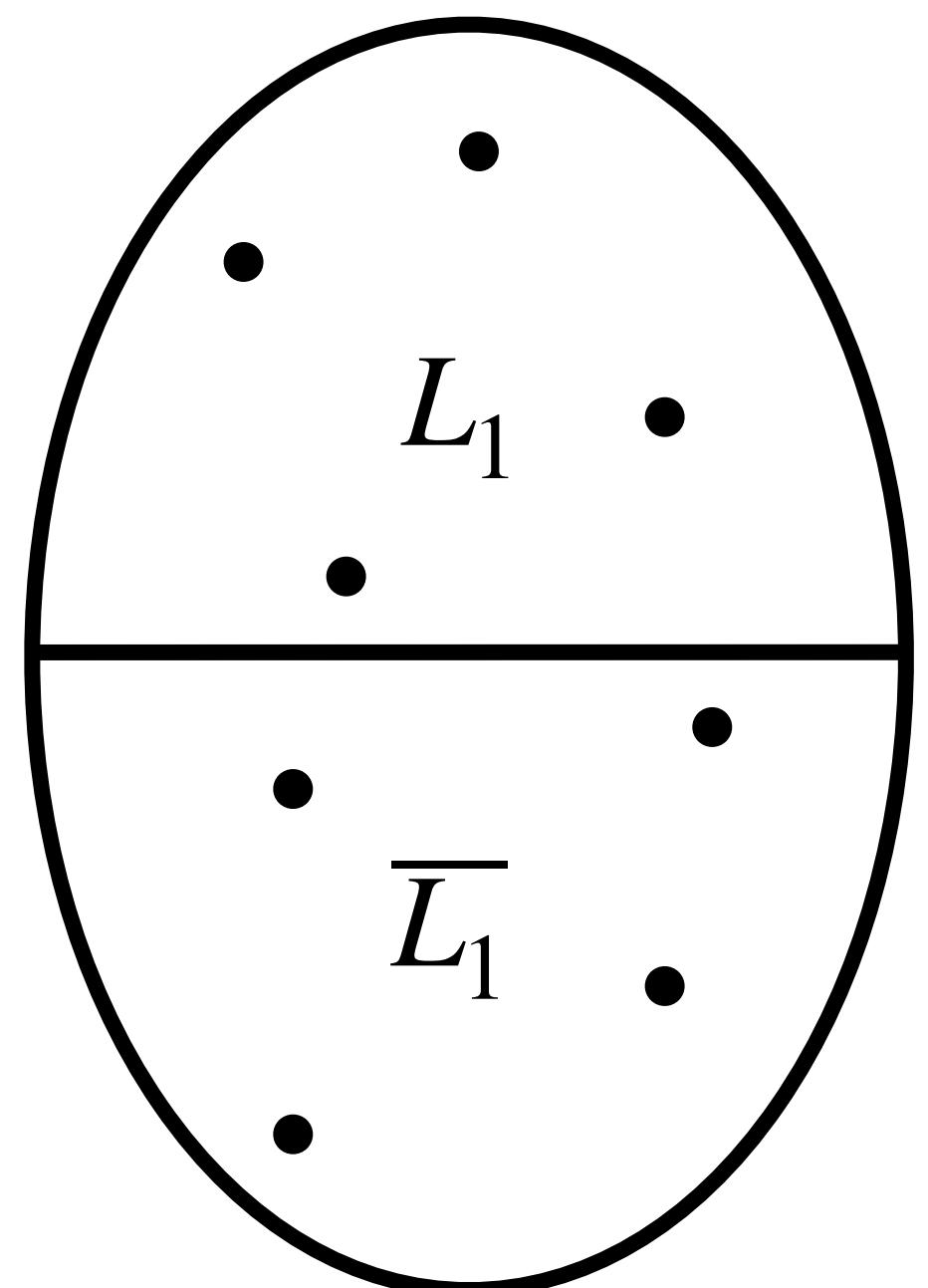
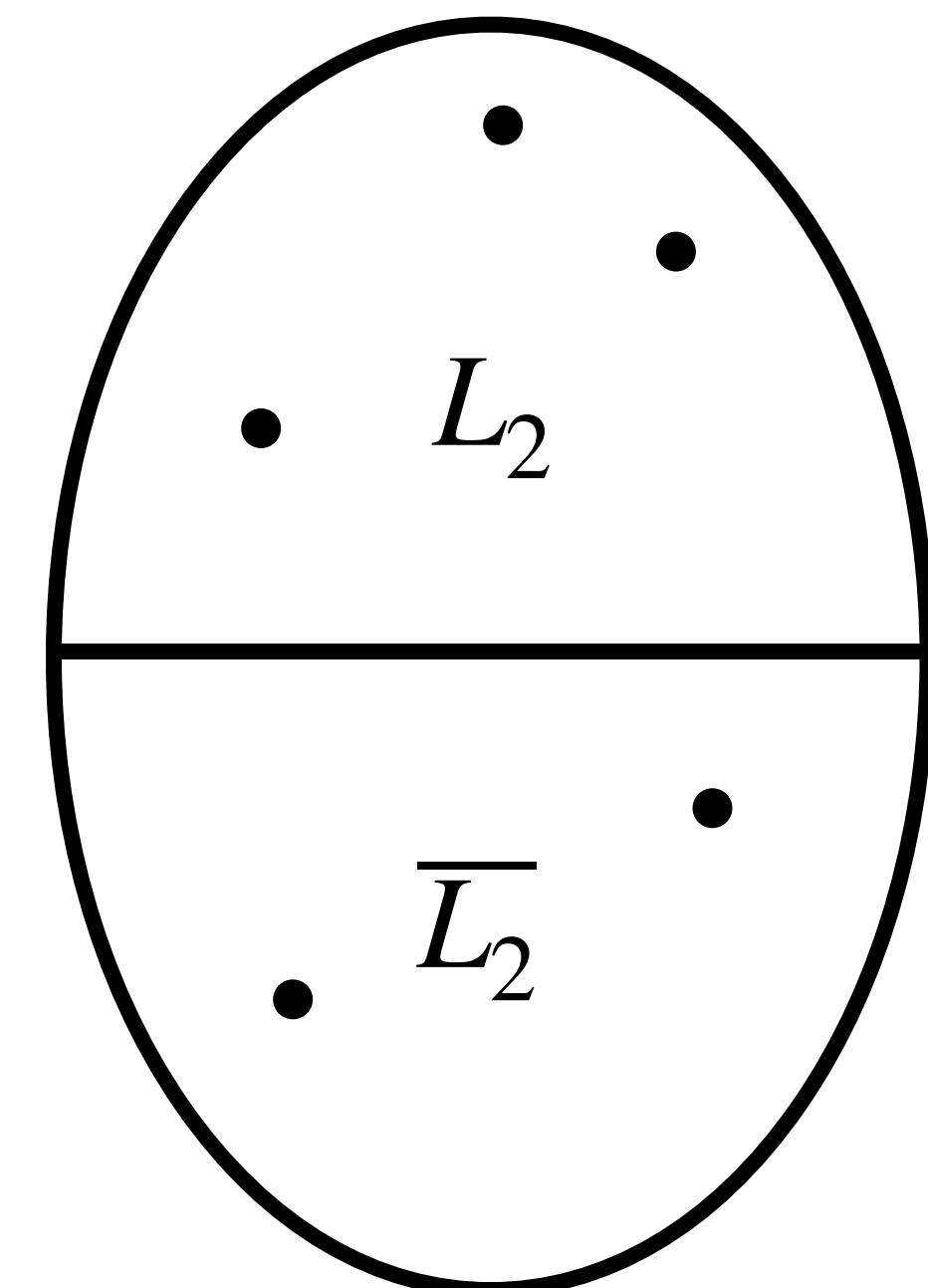
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

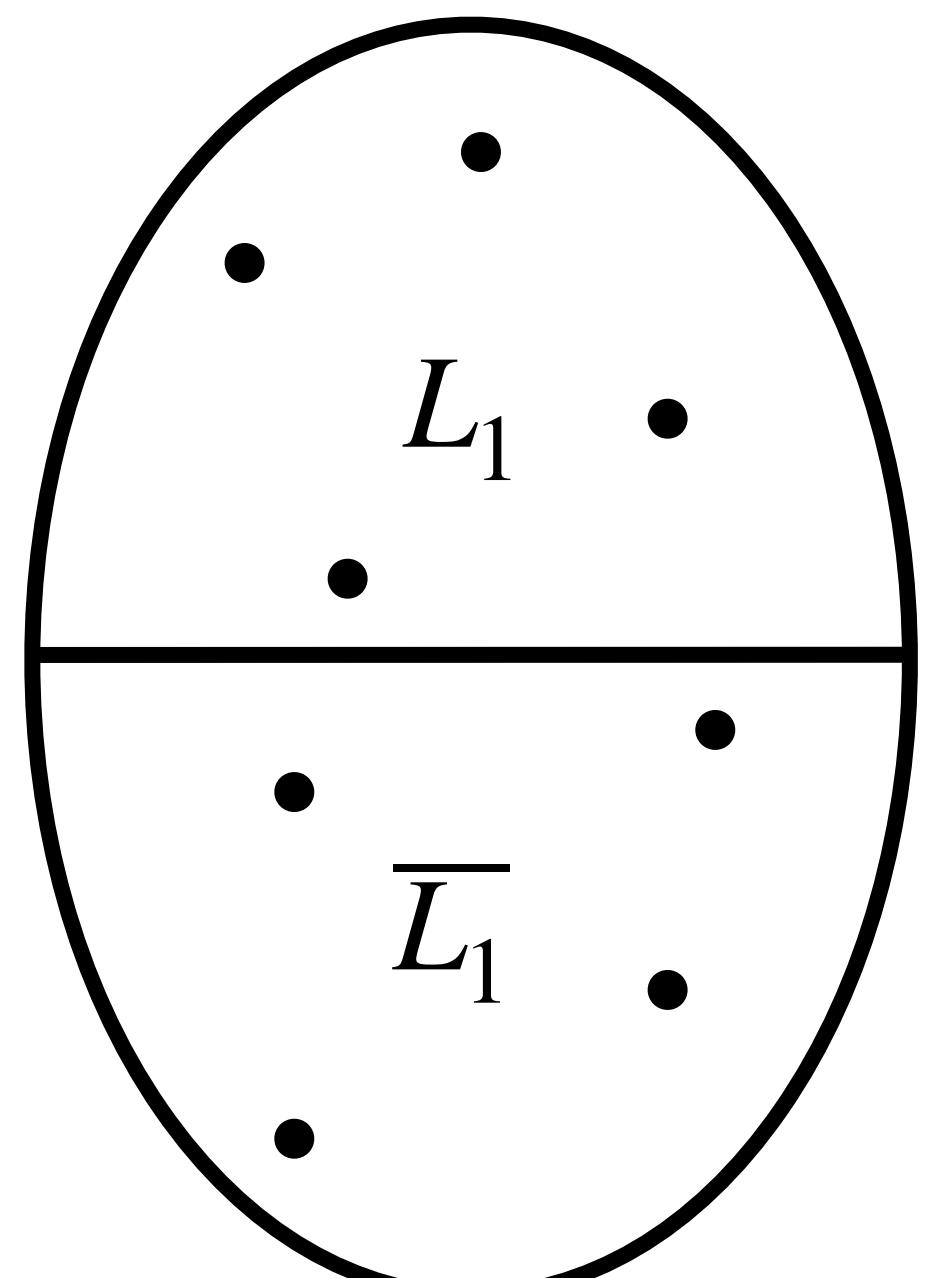
$$x \in L_1 \iff A(x) \in L_2$$



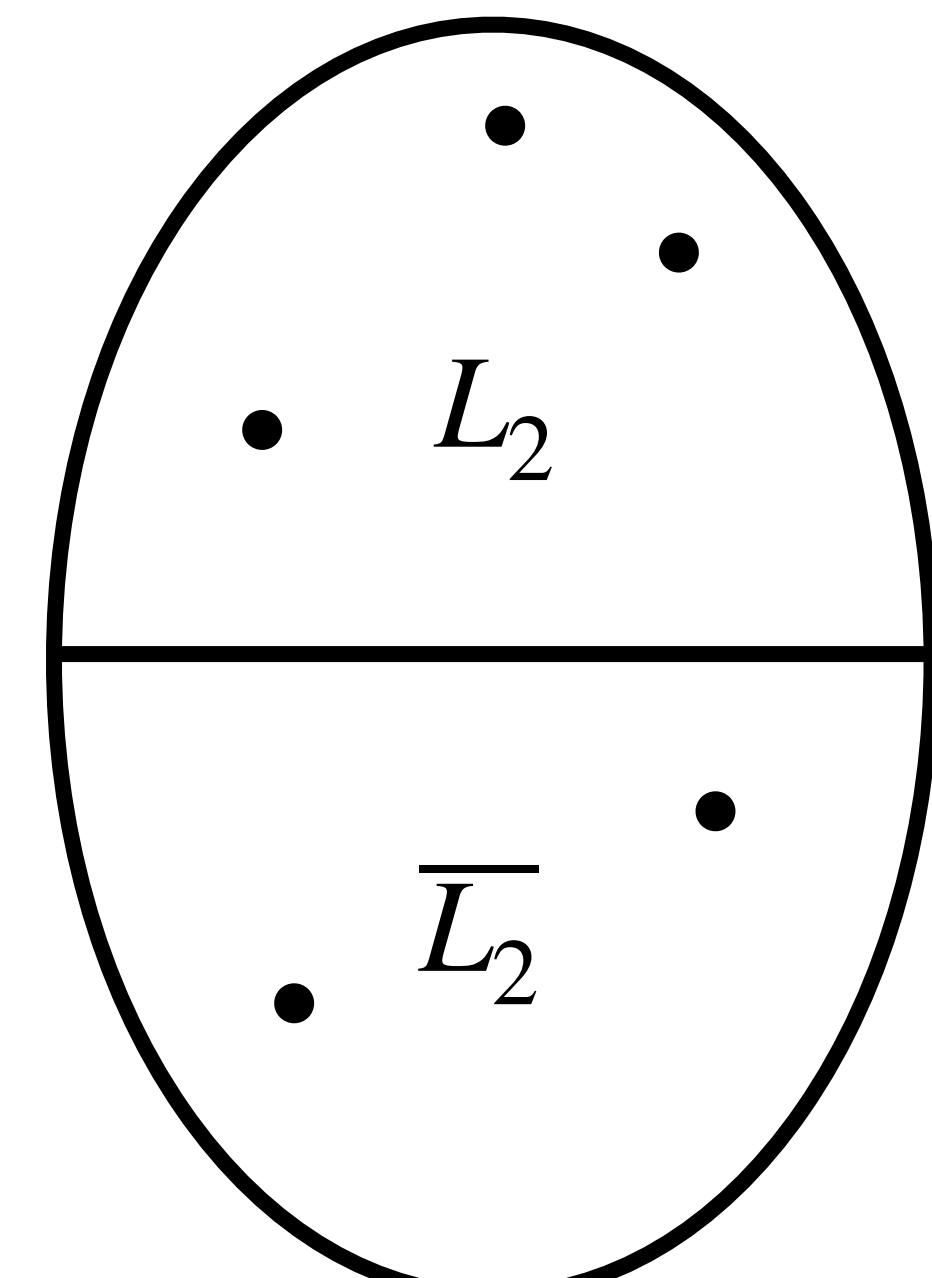
Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

$$x \in L_1 \iff A(x) \in L_2$$



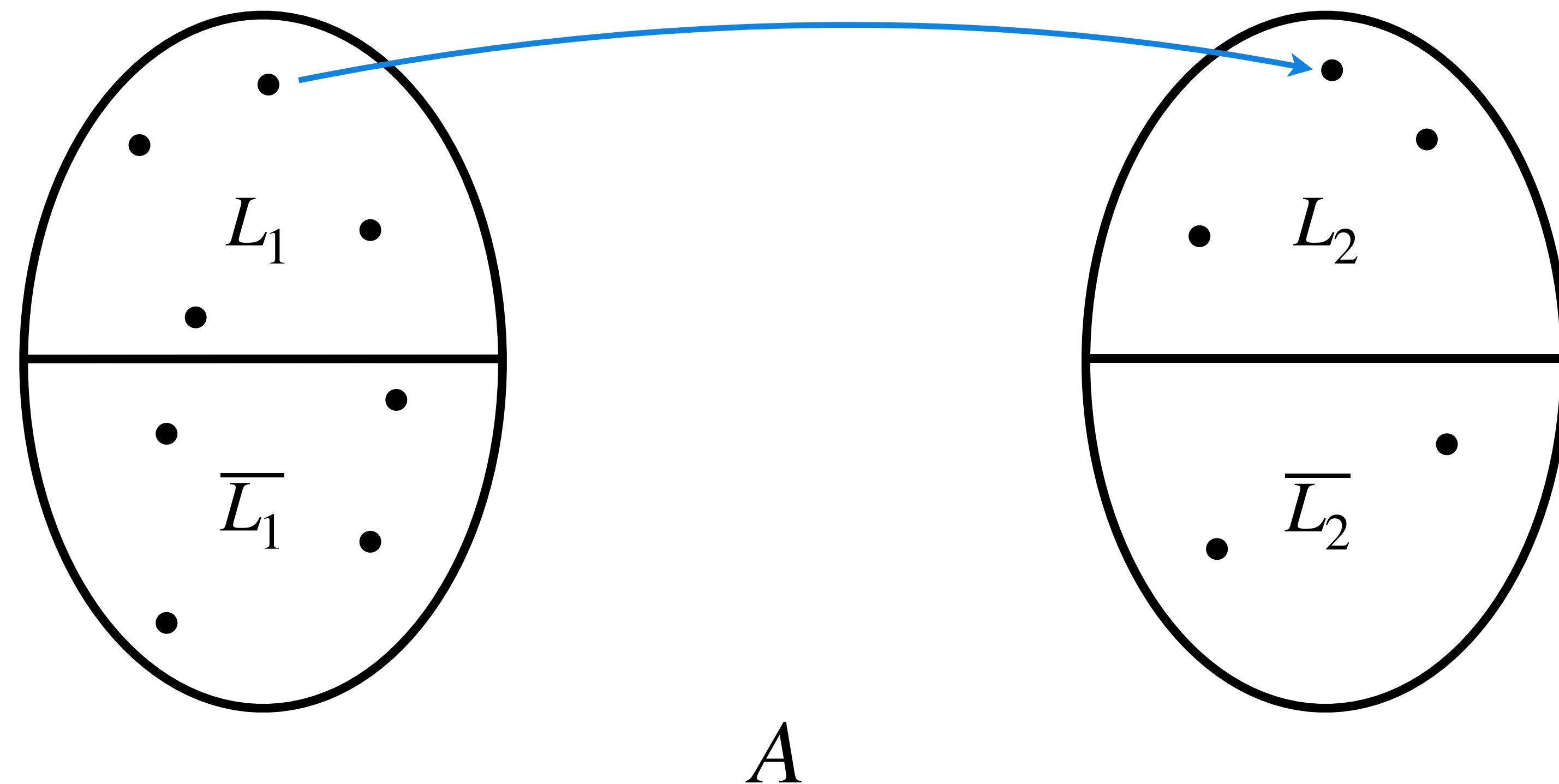
A



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

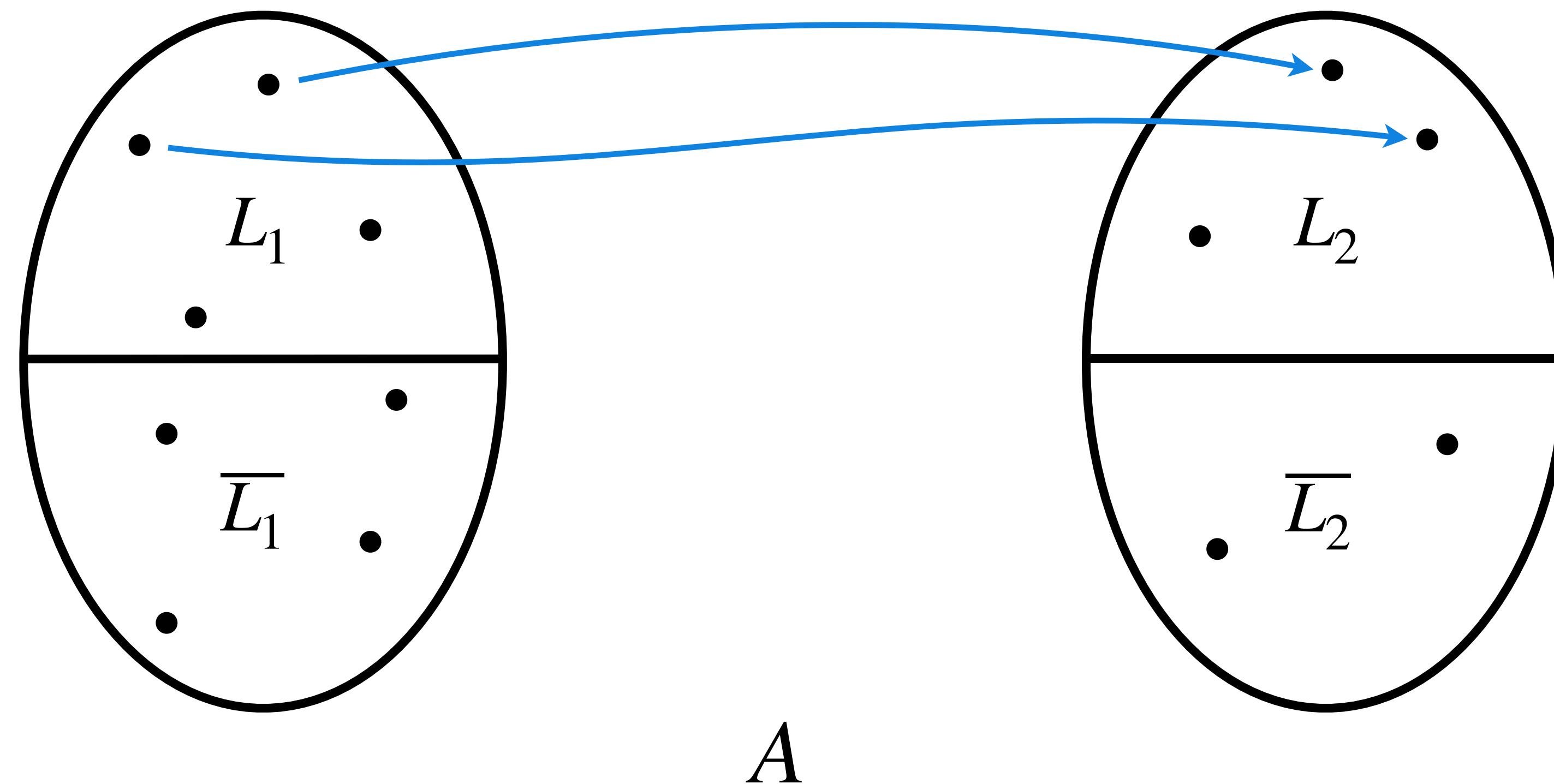
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

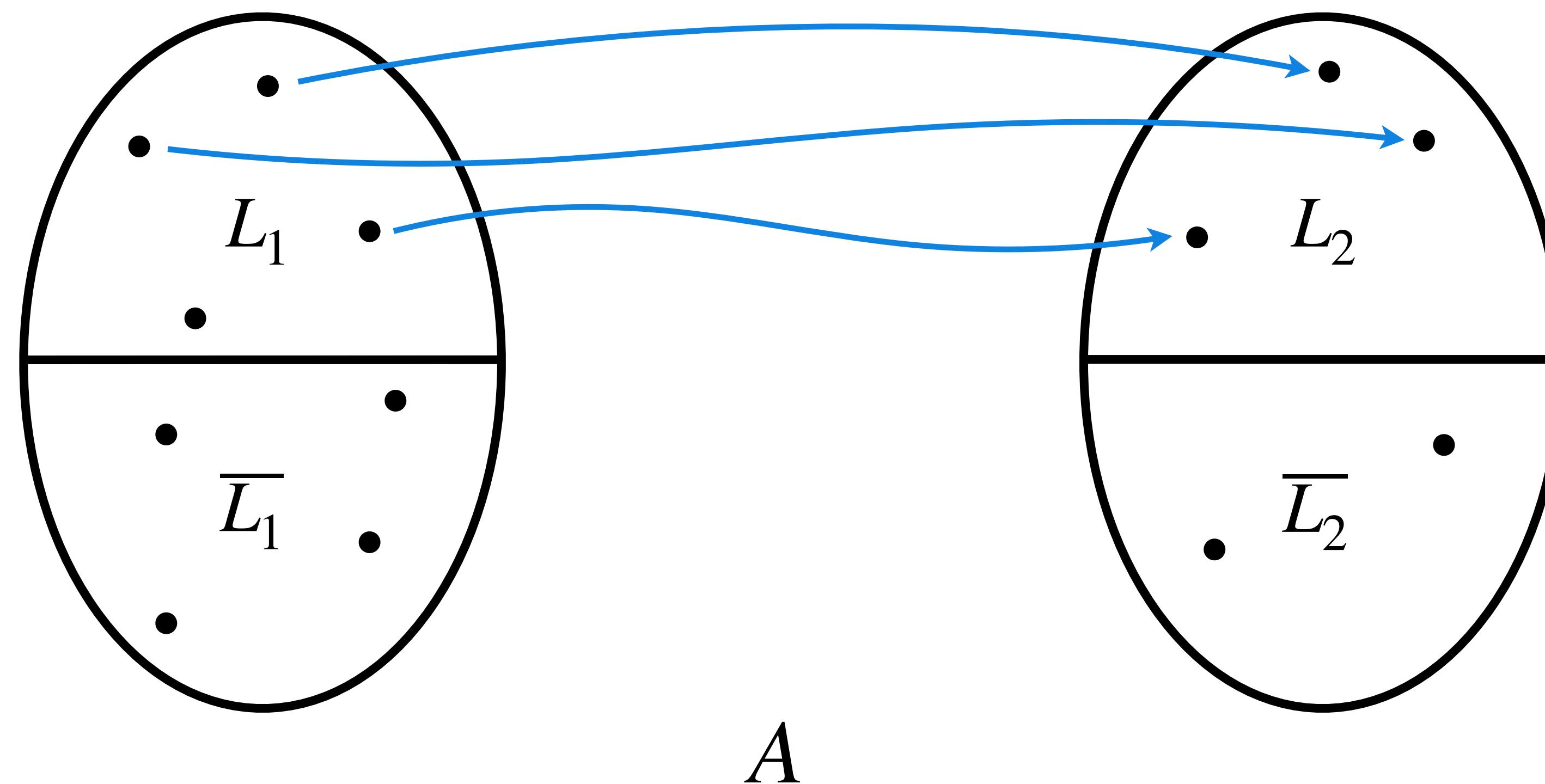
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

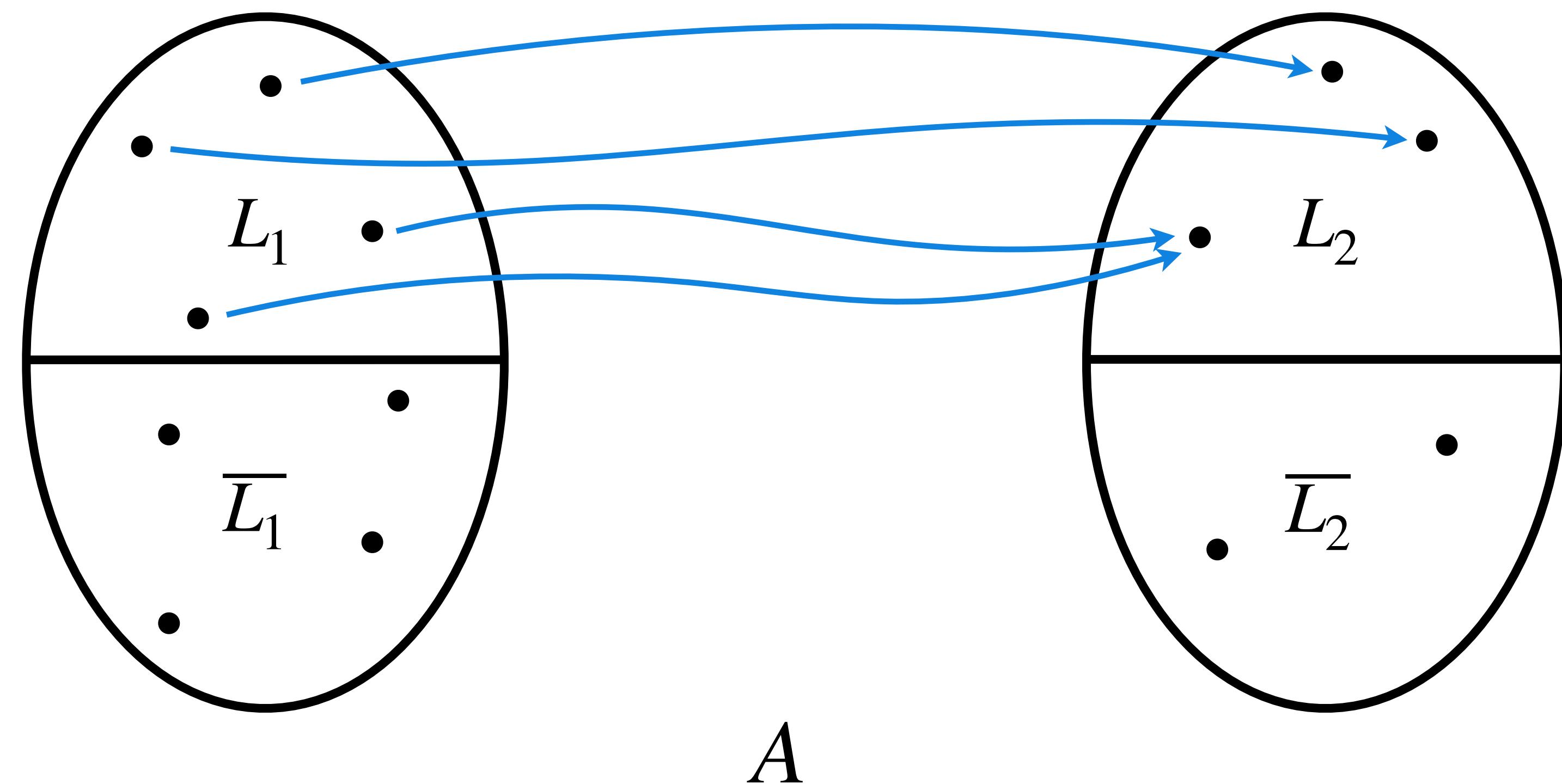
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

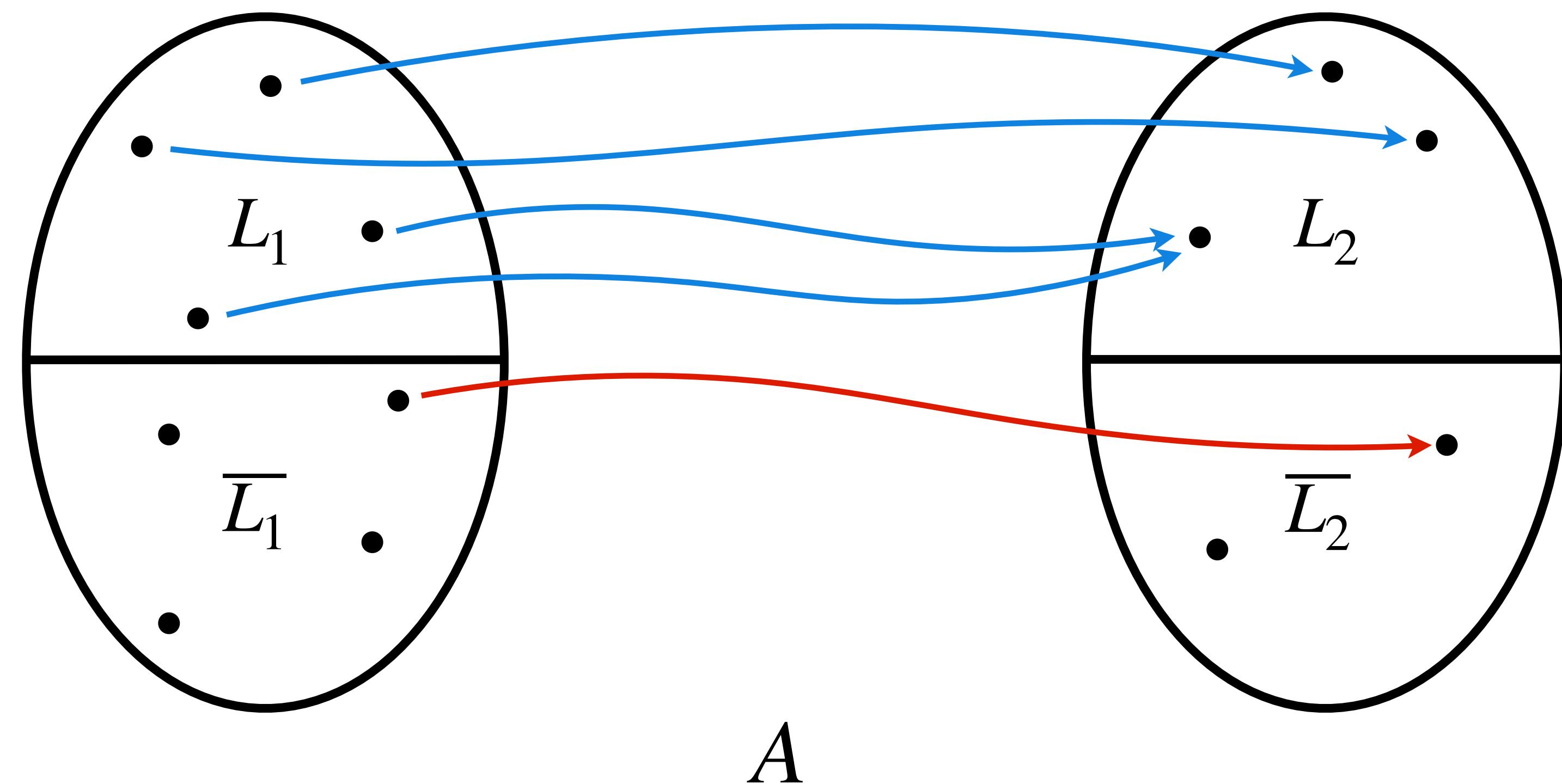
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

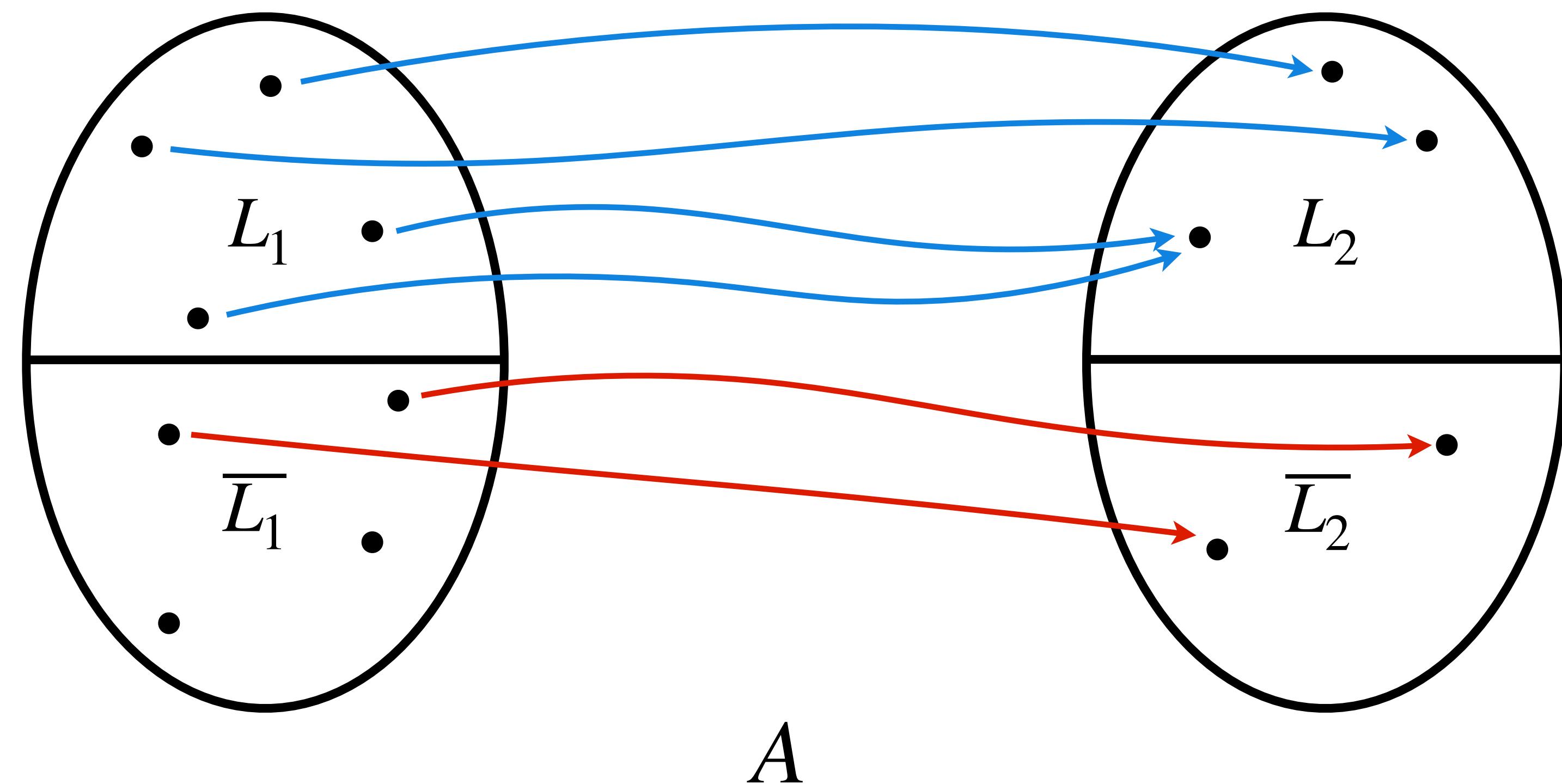
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

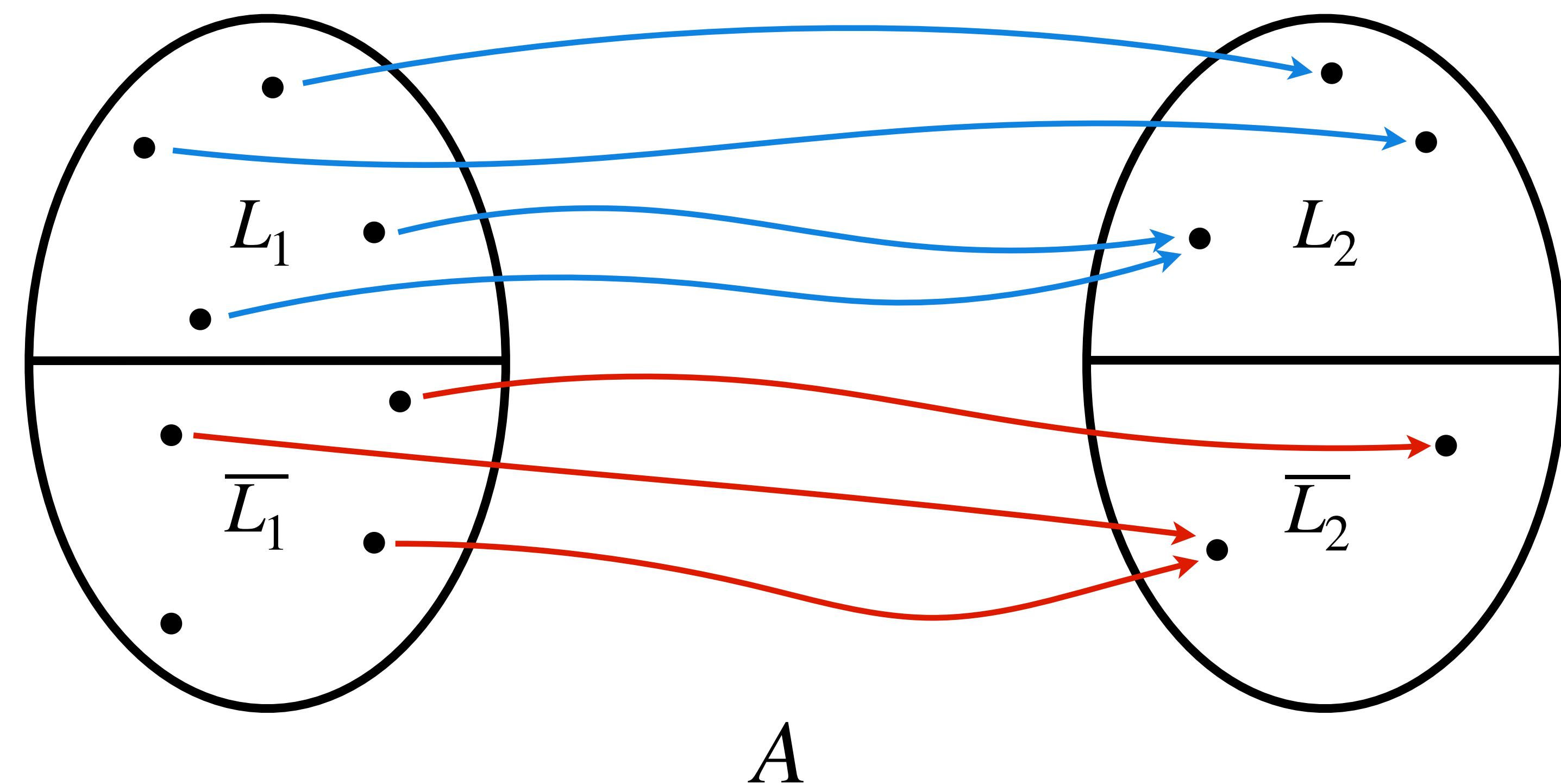
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

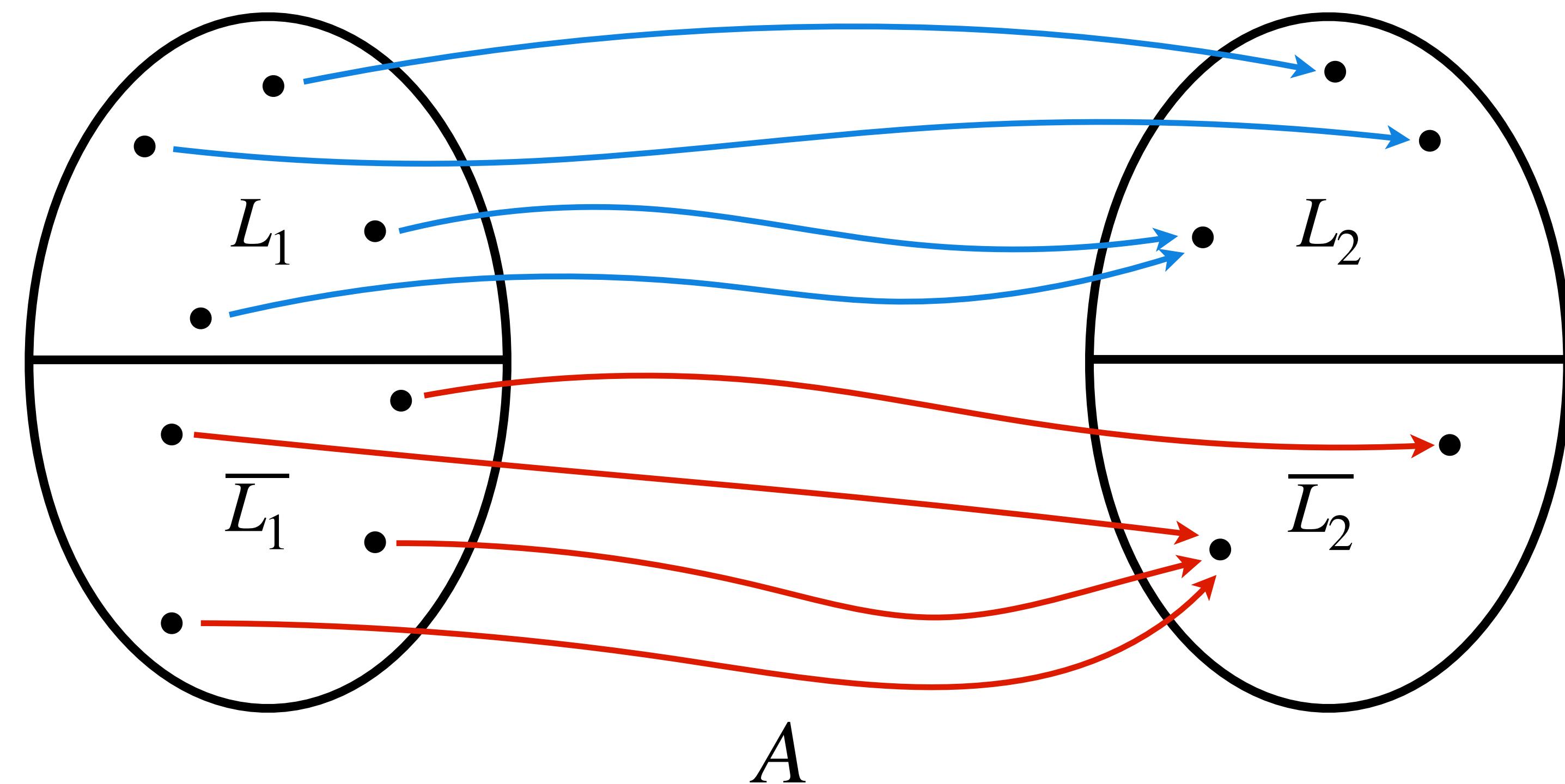
$$x \in L_1 \iff A(x) \in L_2$$



Reductions

A decision problem L_1 is **polytime reducible** to a decision problem L_2 , denoted by $L_1 \leq_p L_2$, if \exists a polytime algorithm A , such that $\forall x \in \{0,1\}^*$,

$$x \in L_1 \iff A(x) \in L_2$$



Reductions

Reductions

We can decide L_1 in polytime,

Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A

Reductions

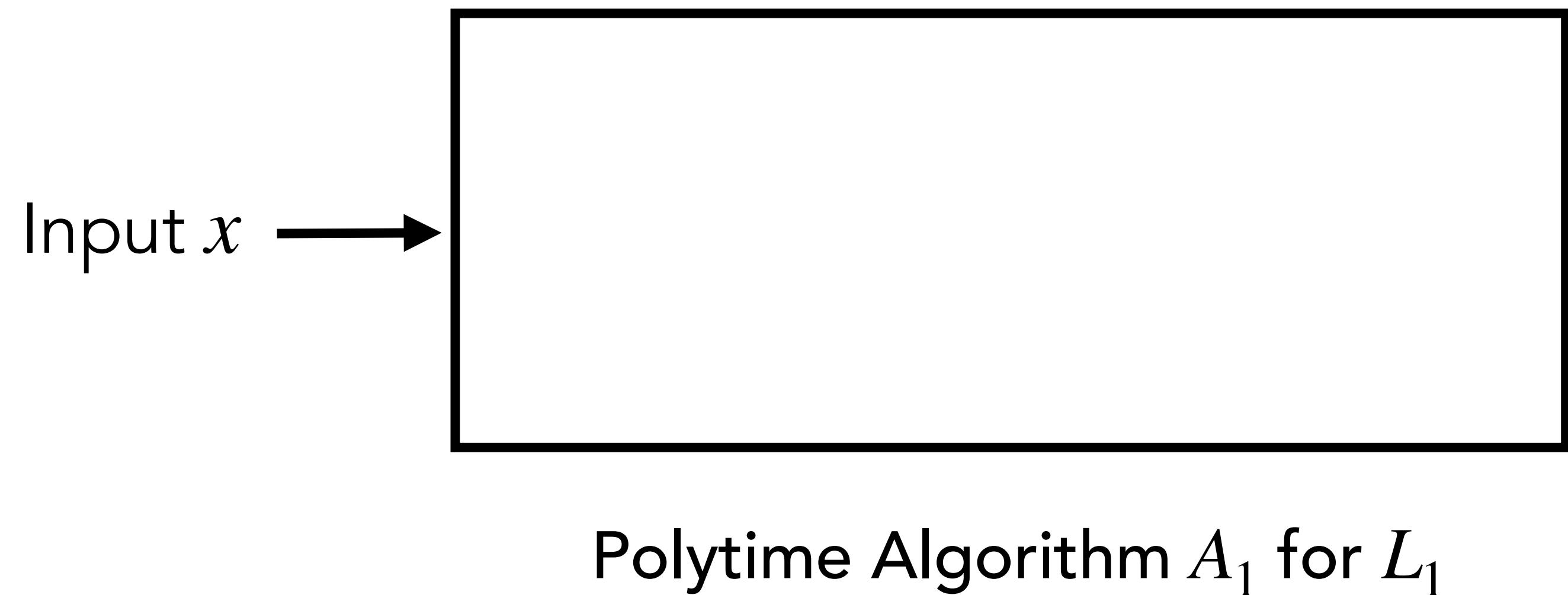
We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a

Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .

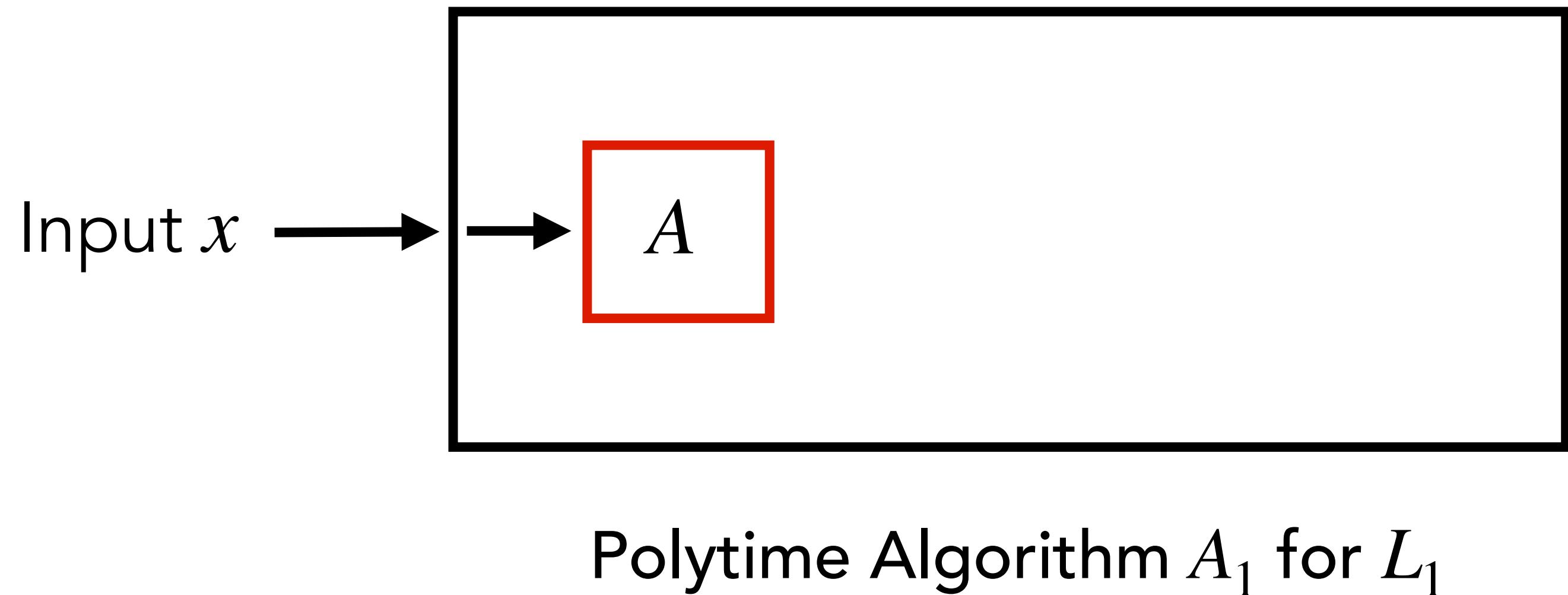
Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



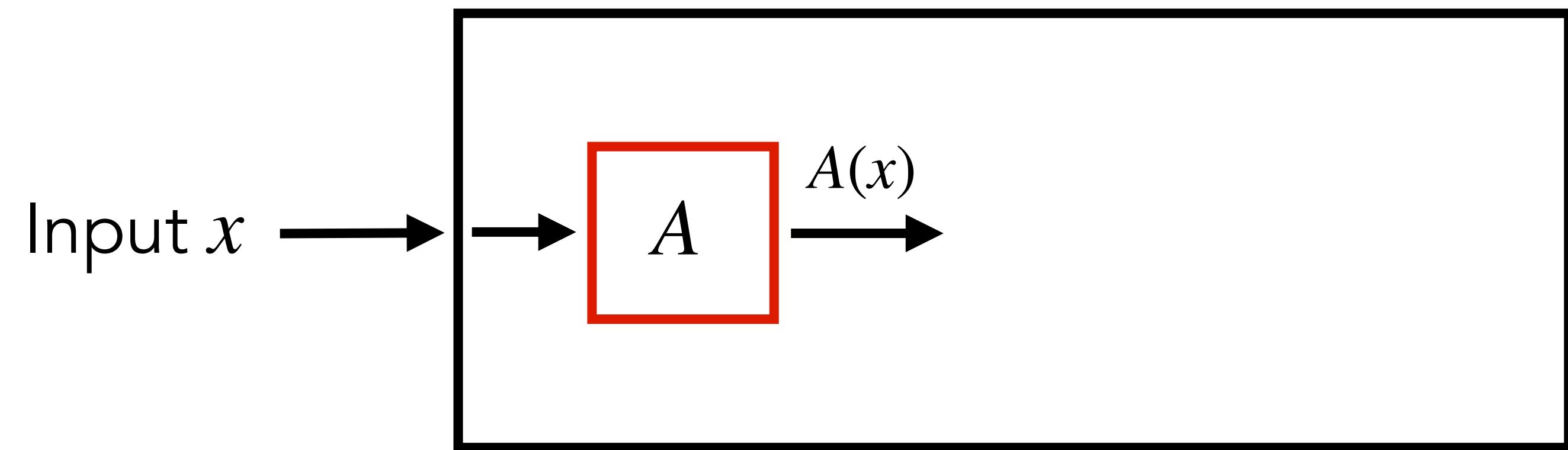
Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



Reductions

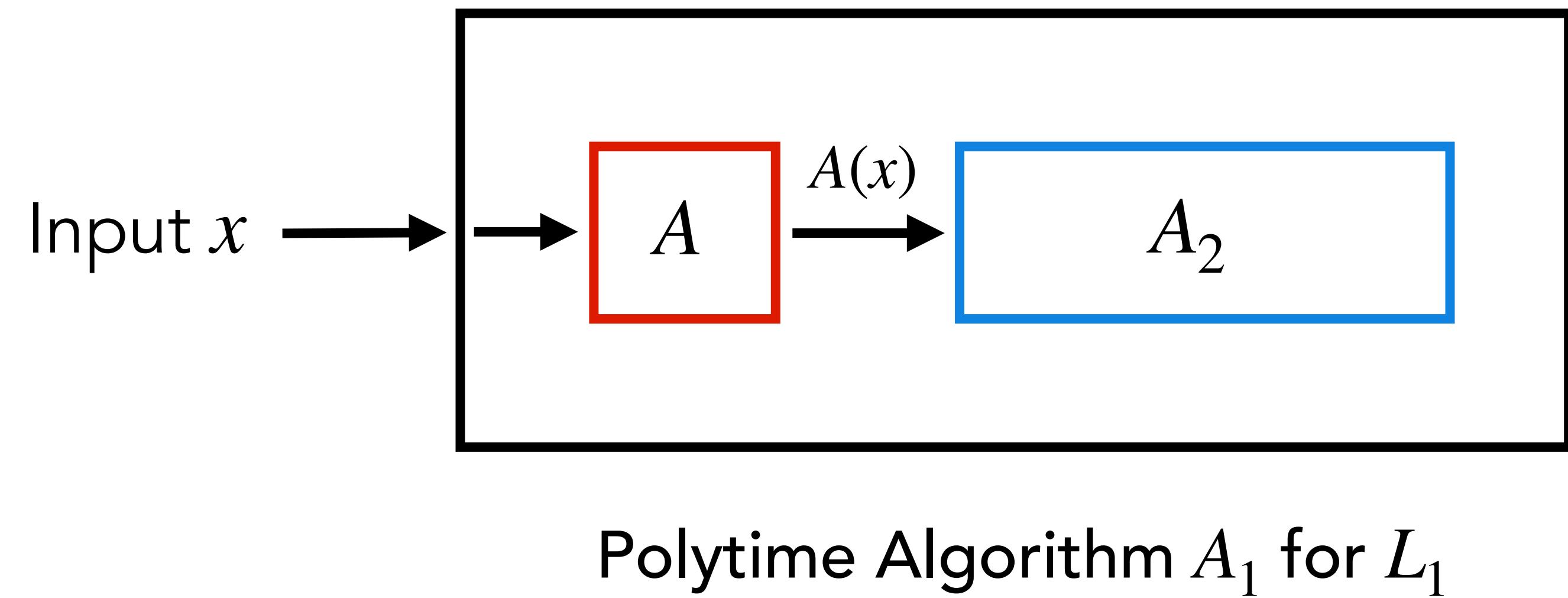
We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



Polytime Algorithm A_1 for L_1

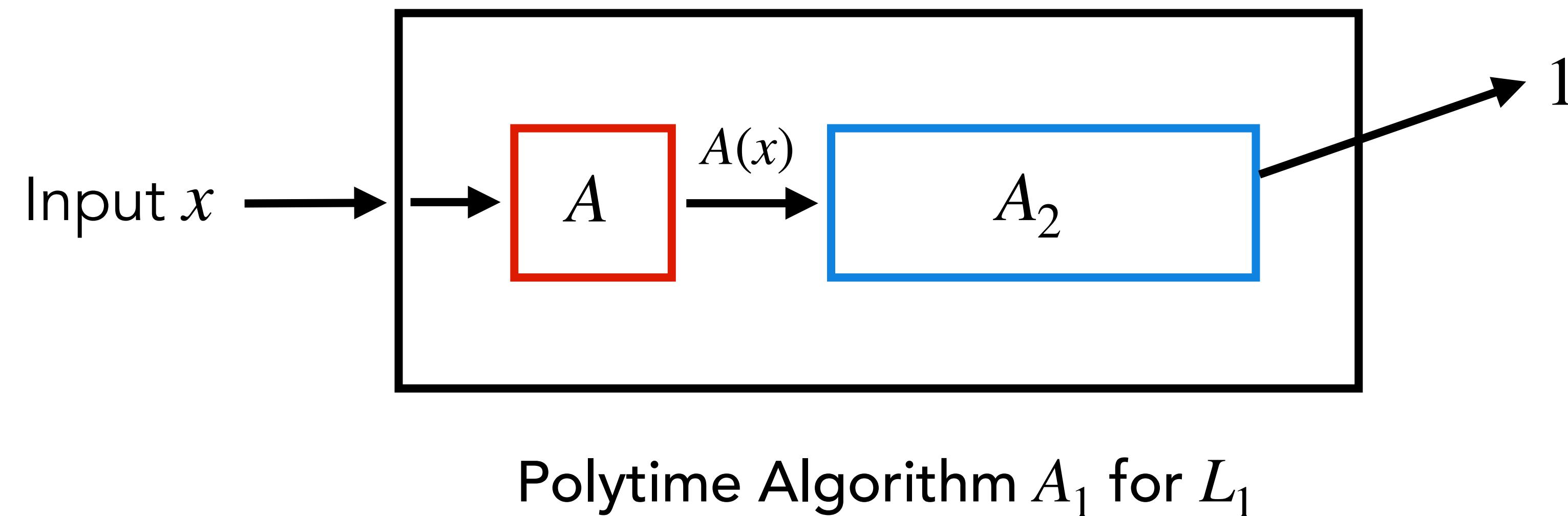
Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



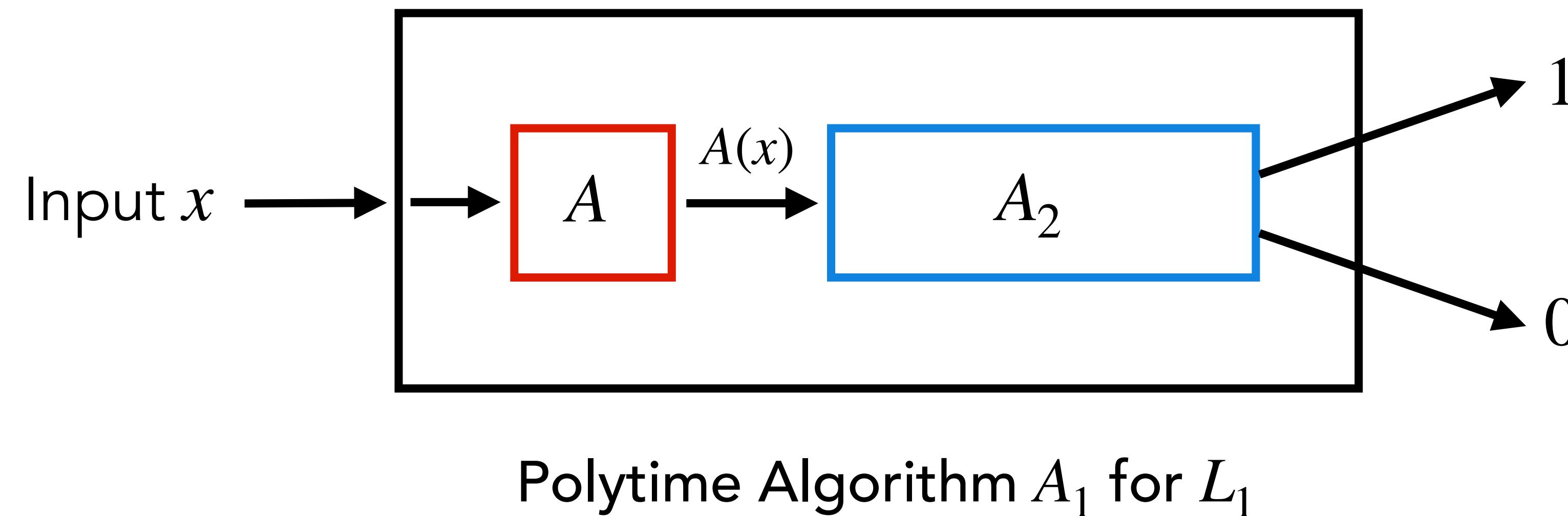
Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



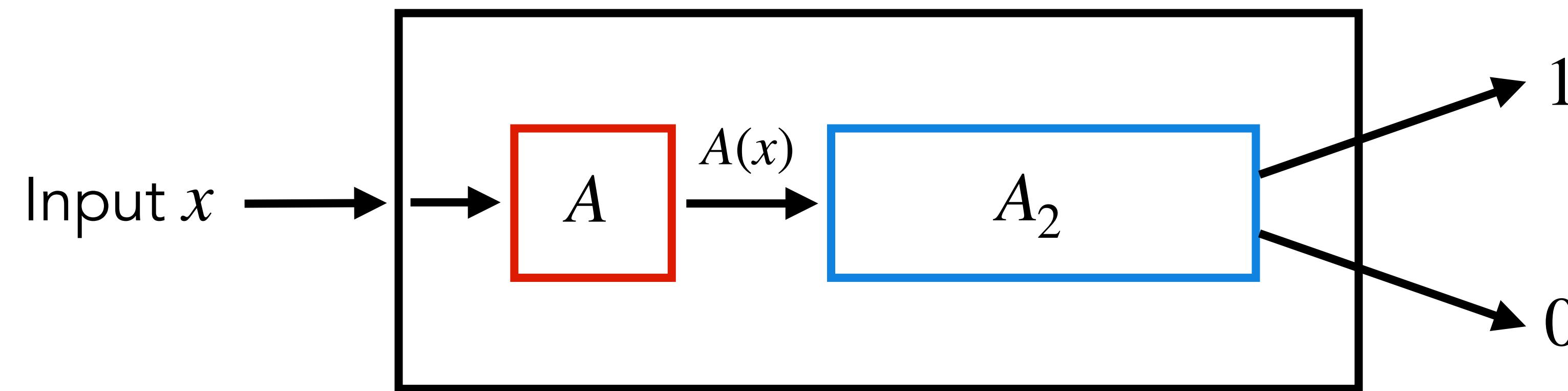
Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .

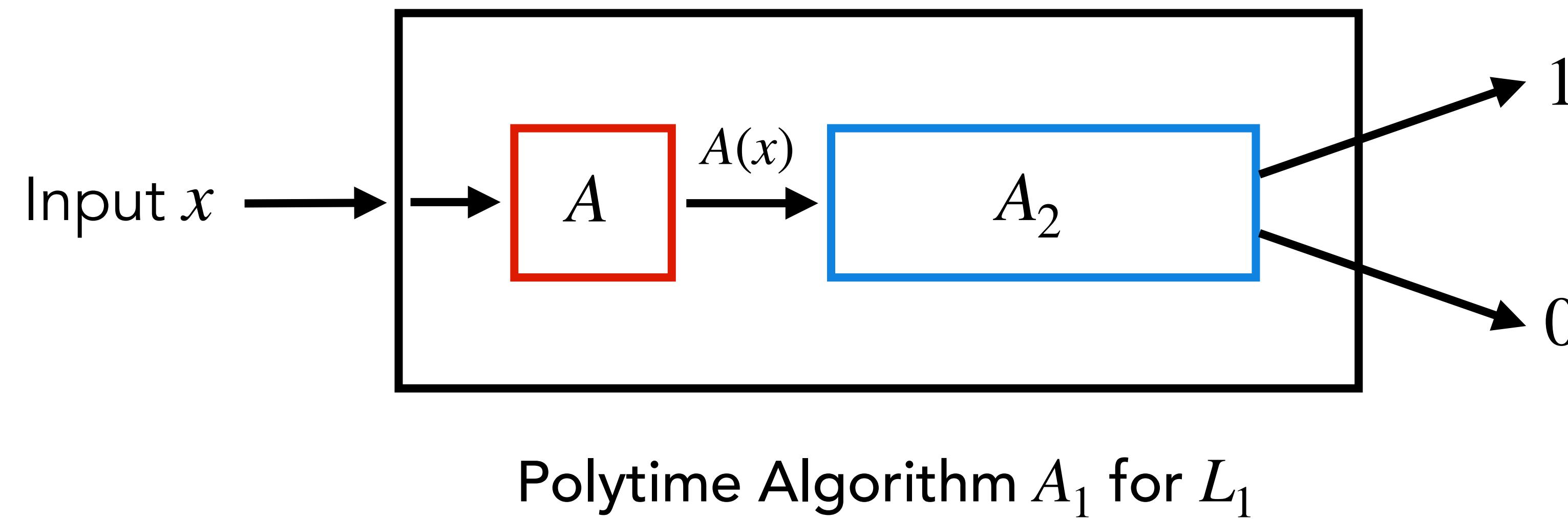


Polytime Algorithm A_1 for L_1

$$x \in L_1$$

Reductions

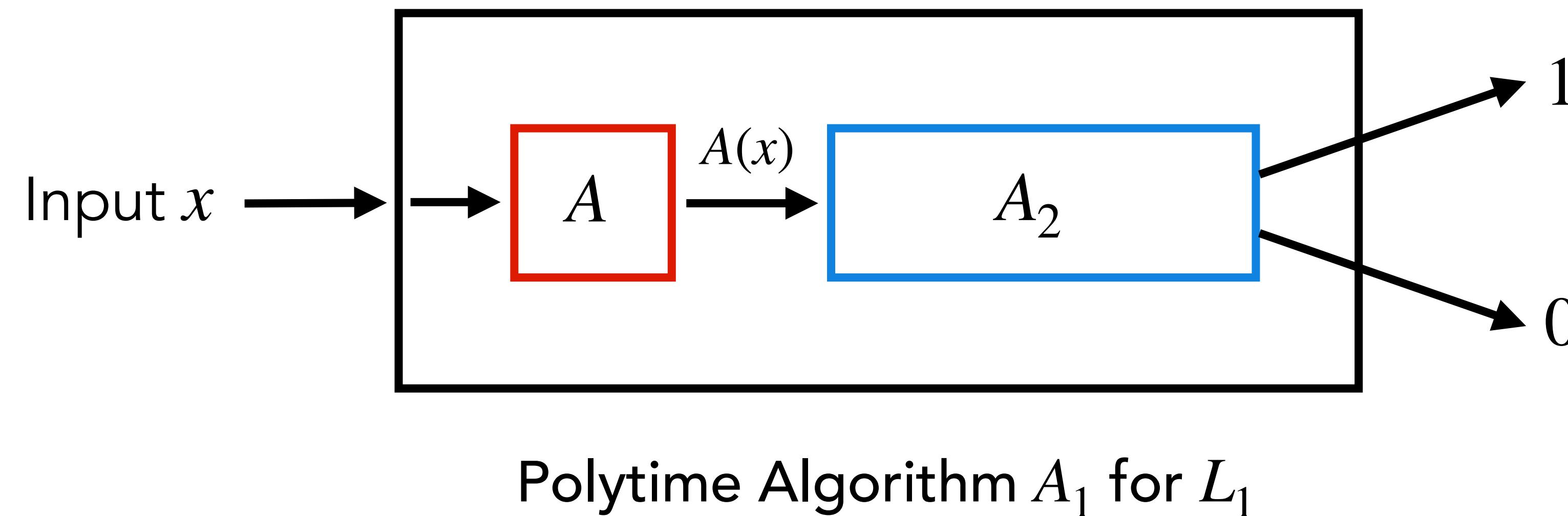
We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



$$x \in L_1 \implies A(x) \in L_2$$

Reductions

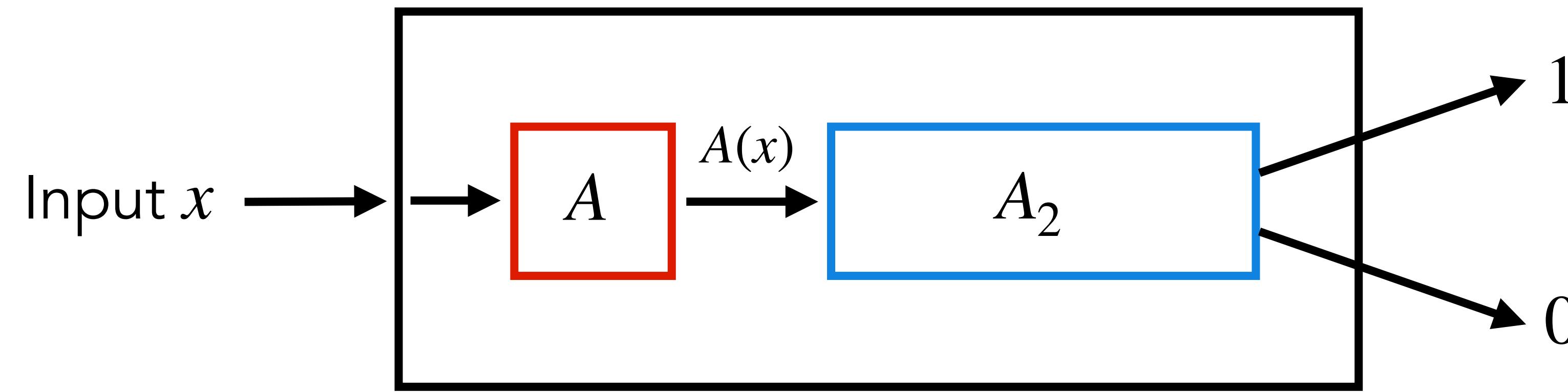
We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



$$x \in L_1 \implies A(x) \in L_2 \implies A_2 \text{ outputs 1 on } A(x)$$

Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .

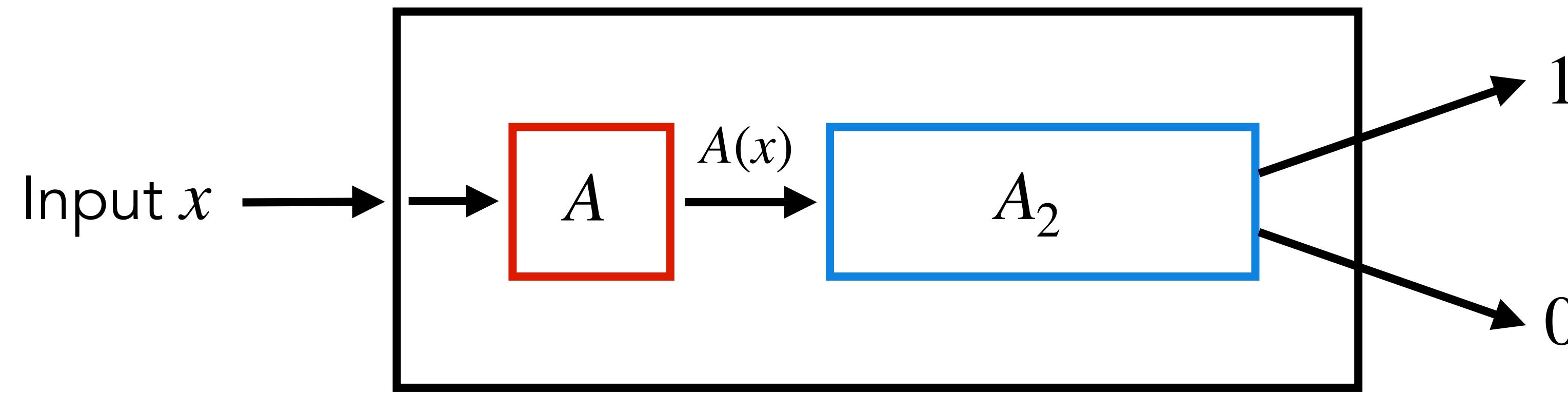


Polytime Algorithm A_1 for L_1

$$x \in L_1 \implies A(x) \in L_2 \implies A_2 \text{ outputs } 1 \text{ on } A(x) \implies A_1 \text{ outputs } 1$$

Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



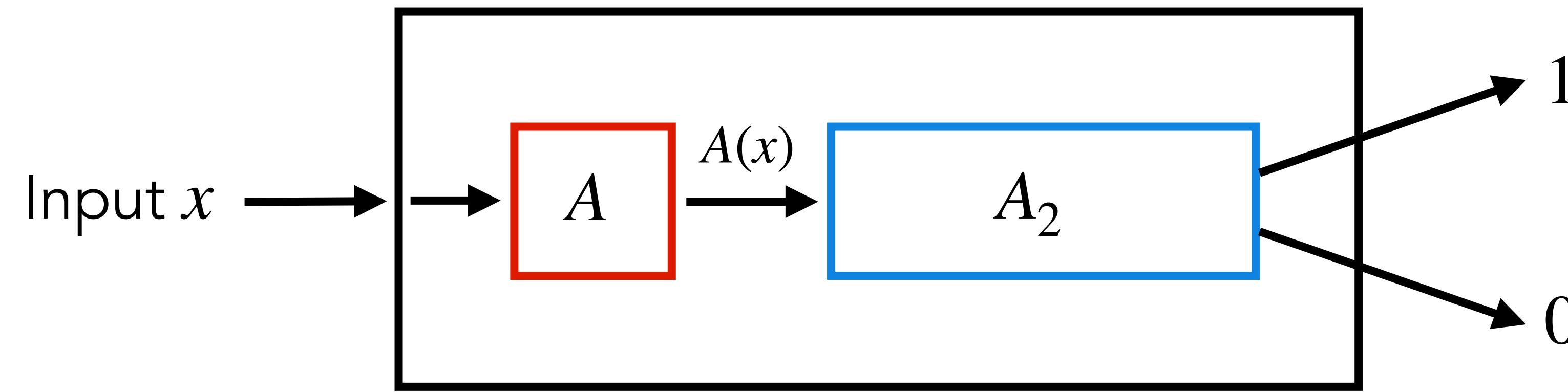
Polytime Algorithm A_1 for L_1

$$x \in L_1 \implies A(x) \in L_2 \implies A_2 \text{ outputs 1 on } A(x) \implies A_1 \text{ outputs 1}$$

$$x \notin L_1$$

Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



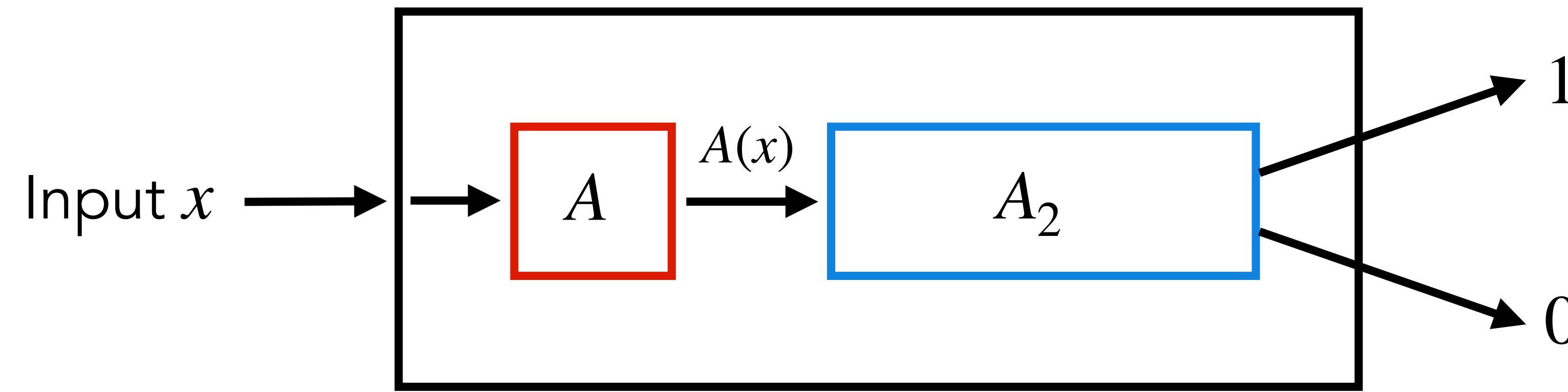
Polytime Algorithm A_1 for L_1

$$x \in L_1 \implies A(x) \in L_2 \implies A_2 \text{ outputs 1 on } A(x) \implies A_1 \text{ outputs 1}$$

$$x \notin L_1 \implies A(x) \notin L_2$$

Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



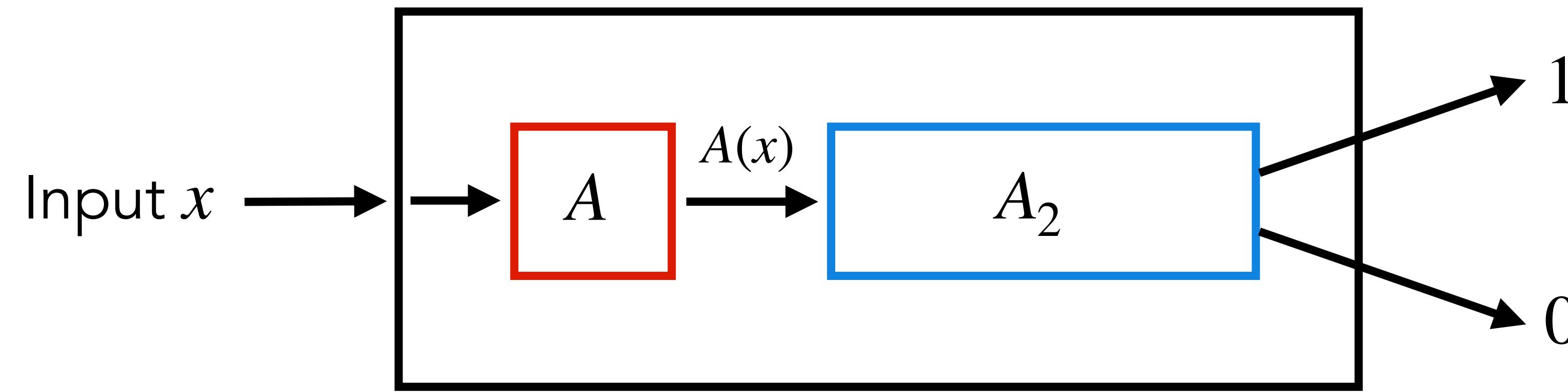
Polytime Algorithm A_1 for L_1

$$x \in L_1 \implies A(x) \in L_2 \implies A_2 \text{ outputs 1 on } A(x) \implies A_1 \text{ outputs 1}$$

$$x \notin L_1 \implies A(x) \notin L_2 \implies A_2 \text{ outputs 0 on } A(x)$$

Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



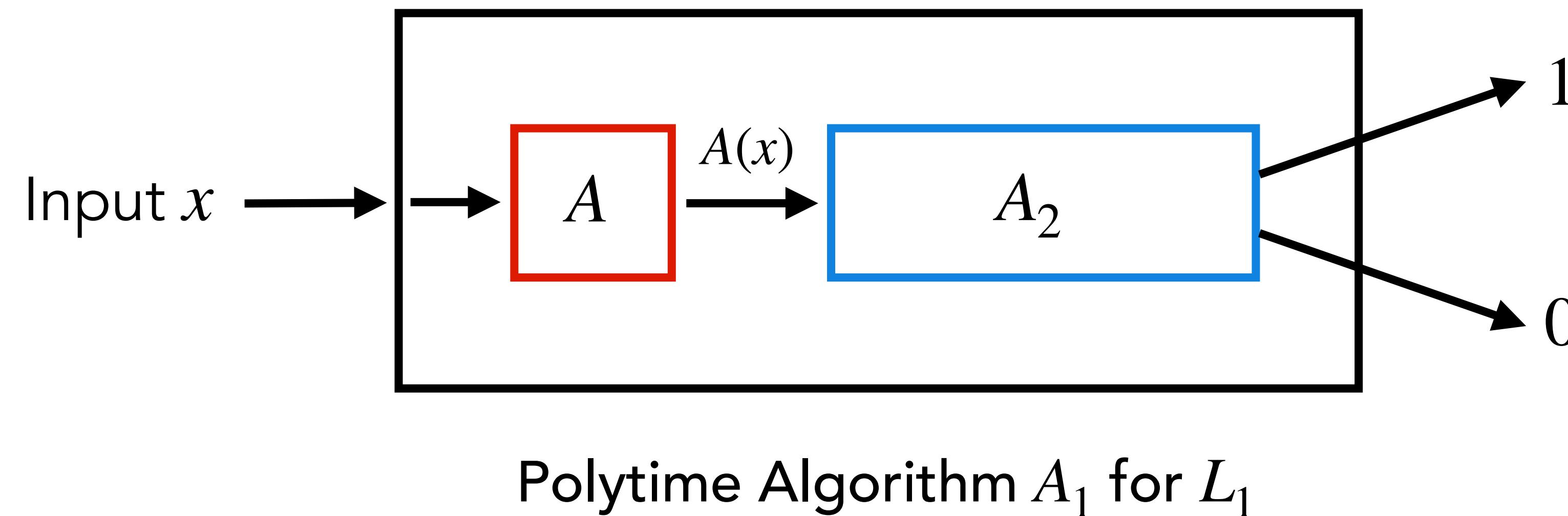
Polytime Algorithm A_1 for L_1

$$x \in L_1 \implies A(x) \in L_2 \implies A_2 \text{ outputs 1 on } A(x) \implies A_1 \text{ outputs 1}$$

$$x \notin L_1 \implies A(x) \notin L_2 \implies A_2 \text{ outputs 0 on } A(x) \implies A_1 \text{ outputs 0}$$

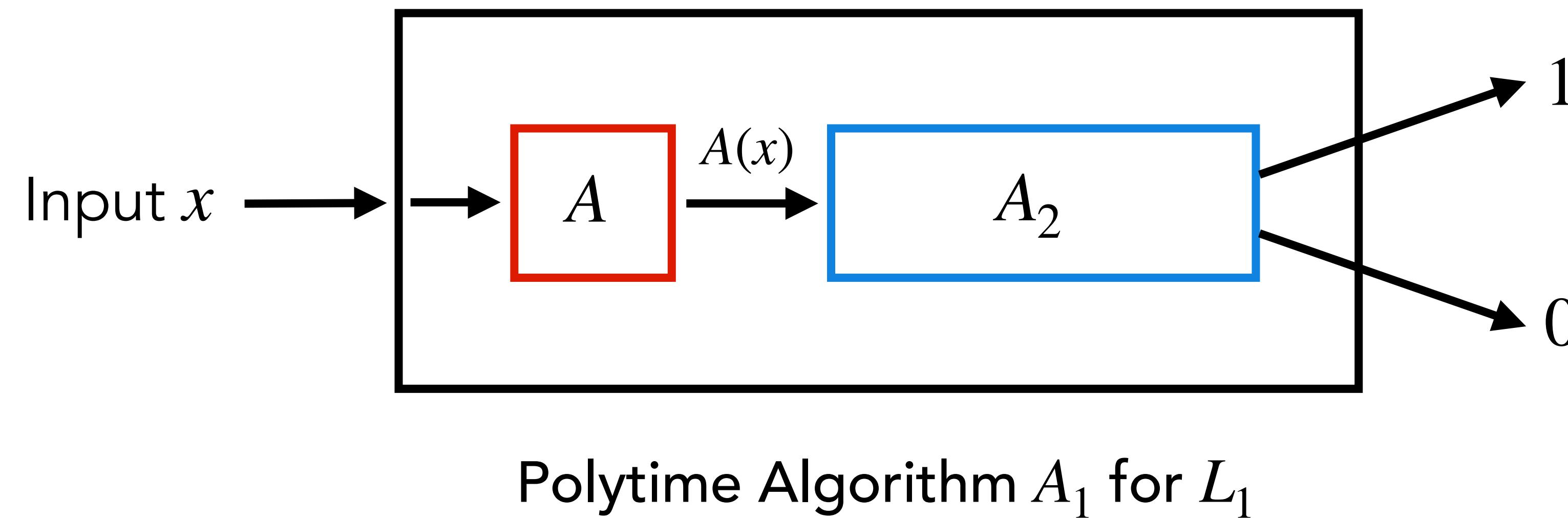
Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



Reductions

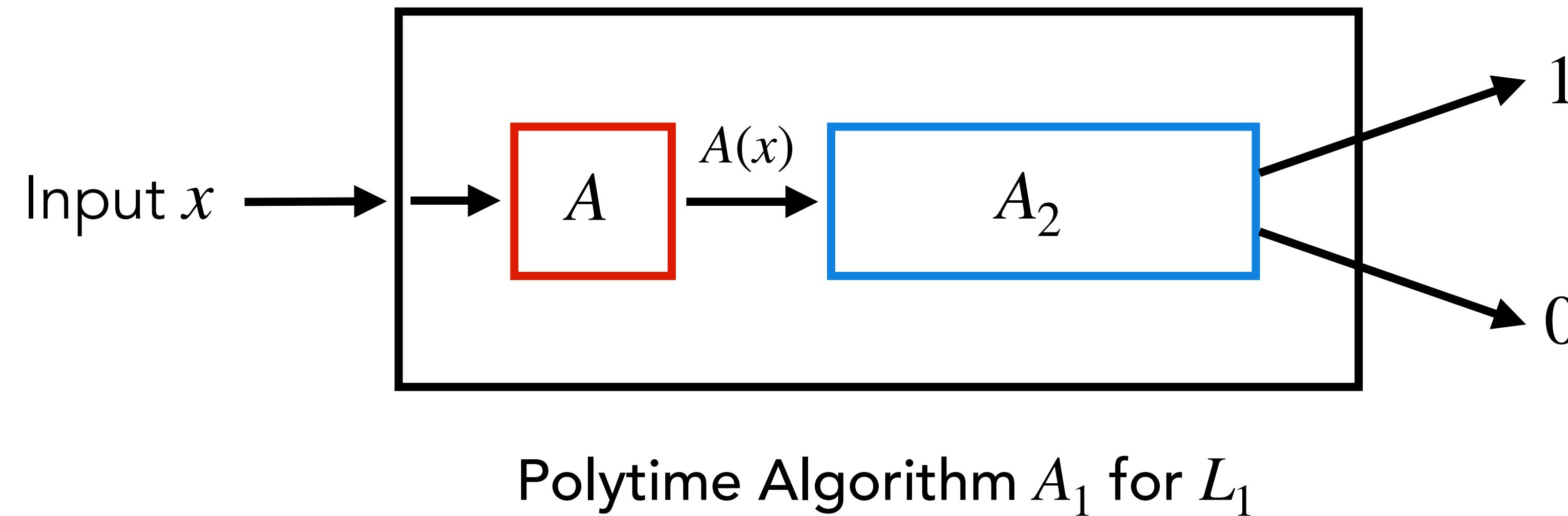
We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



Fact: Suppose $L_1 \leq_p L_2$.

Reductions

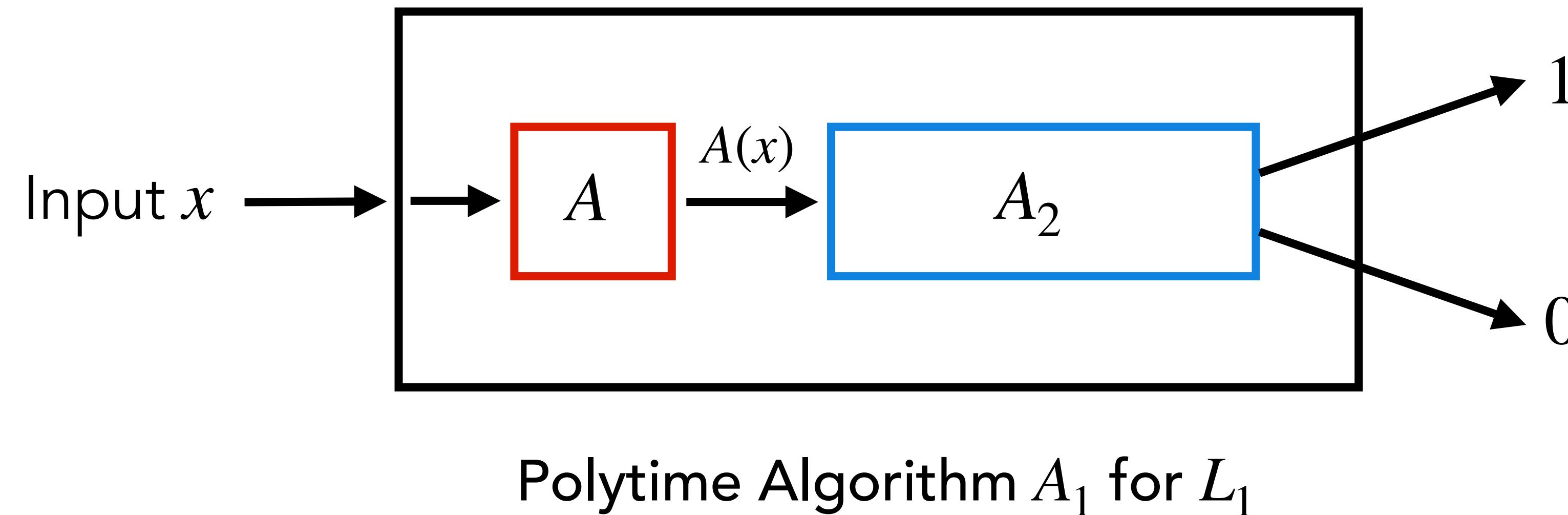
We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



Fact: Suppose $L_1 \leq_p L_2$. If L_2 is decidable in polytime, then so is L_1 .

Reductions

We can decide L_1 in polytime, if we know that $L_1 \leq_p L_2$ via A and L_2 is decidable by a polytime algorithm A_2 .



Fact: Suppose $L_1 \leq_p L_2$. If L_1 is not polytime decidable, then so is L_2 .

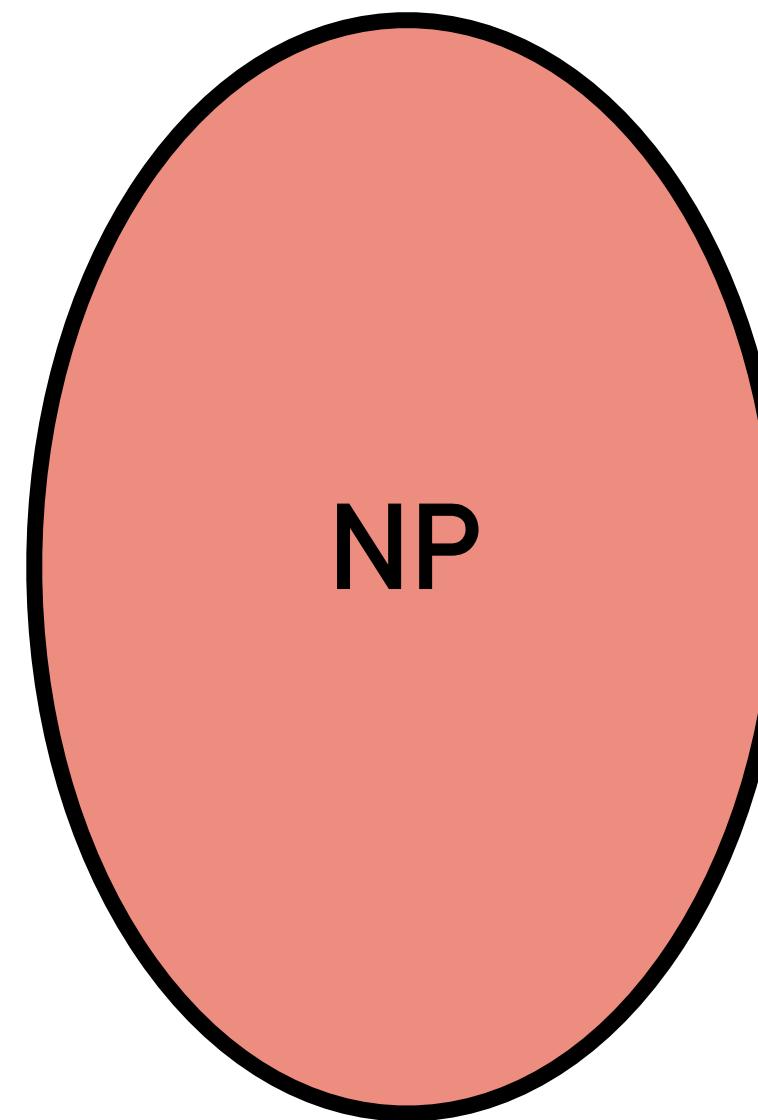
NP-Completeness and NP-Hardness

NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called **NP-hard** if $L' \leq_p L$, for every $L' \in \text{NP}$.

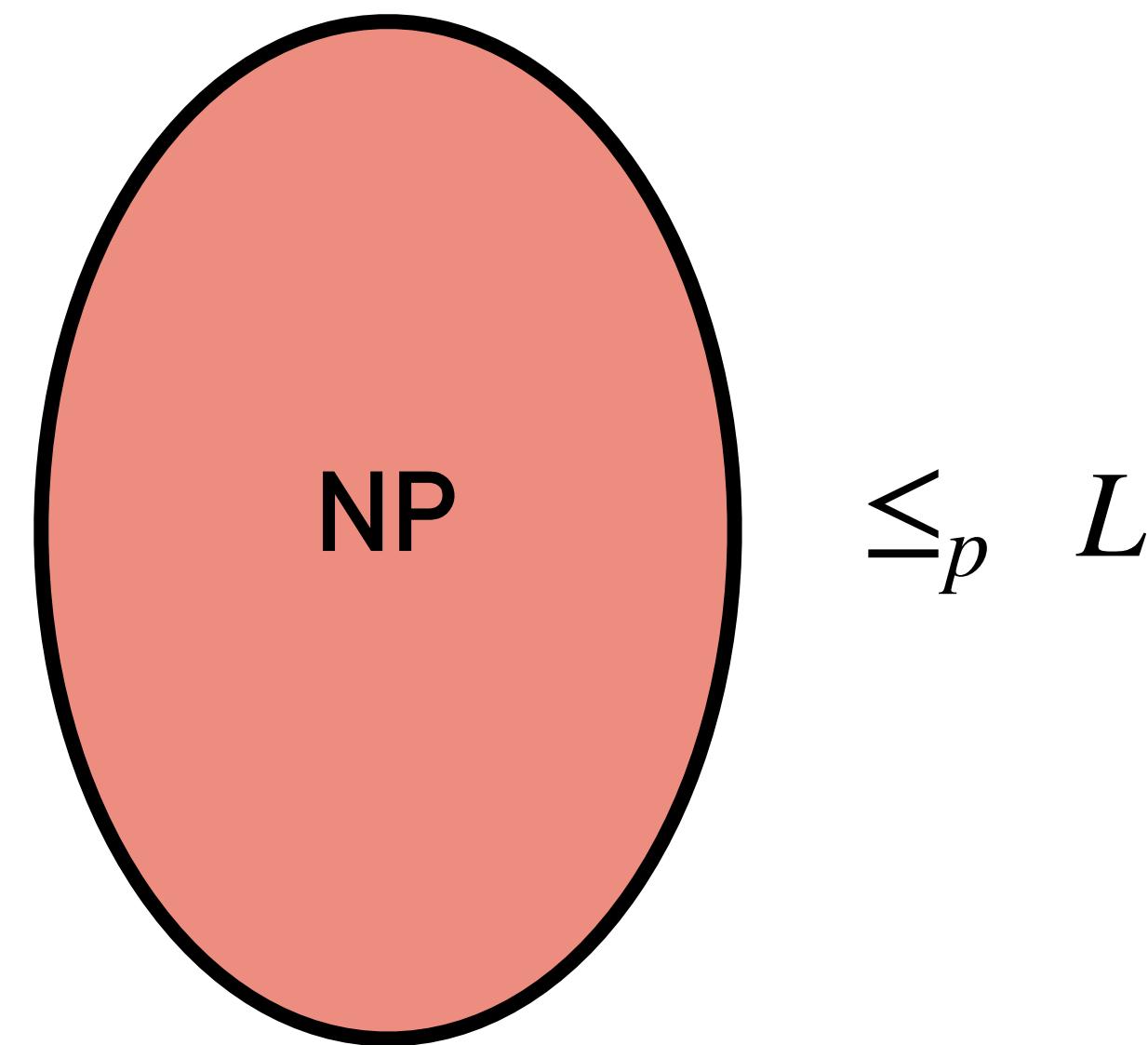
NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called **NP-hard** if $L' \leq_p L$, for every $L' \in \text{NP}$.



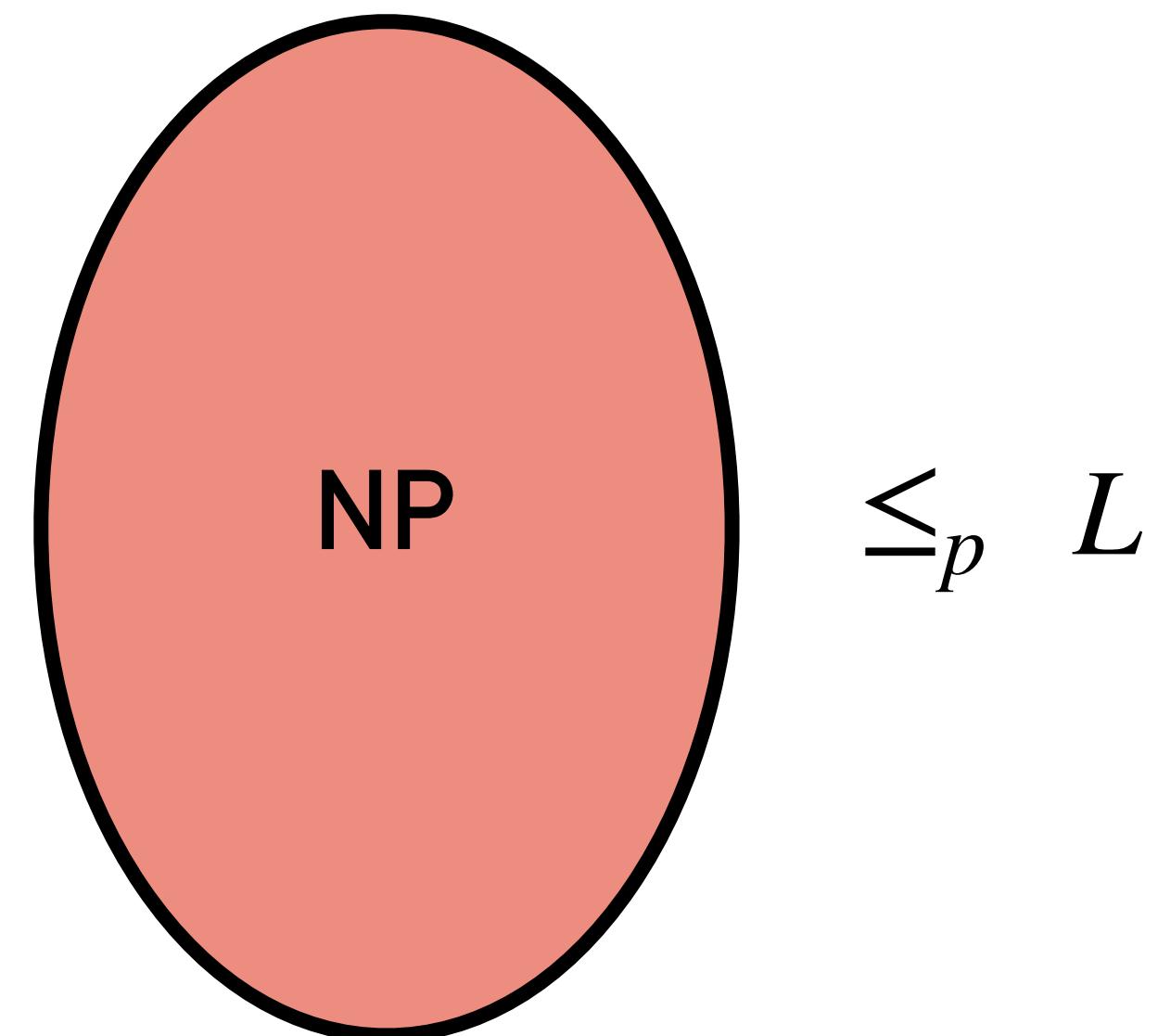
NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called **NP-hard** if $L' \leq_p L$, for every $L' \in \text{NP}$.



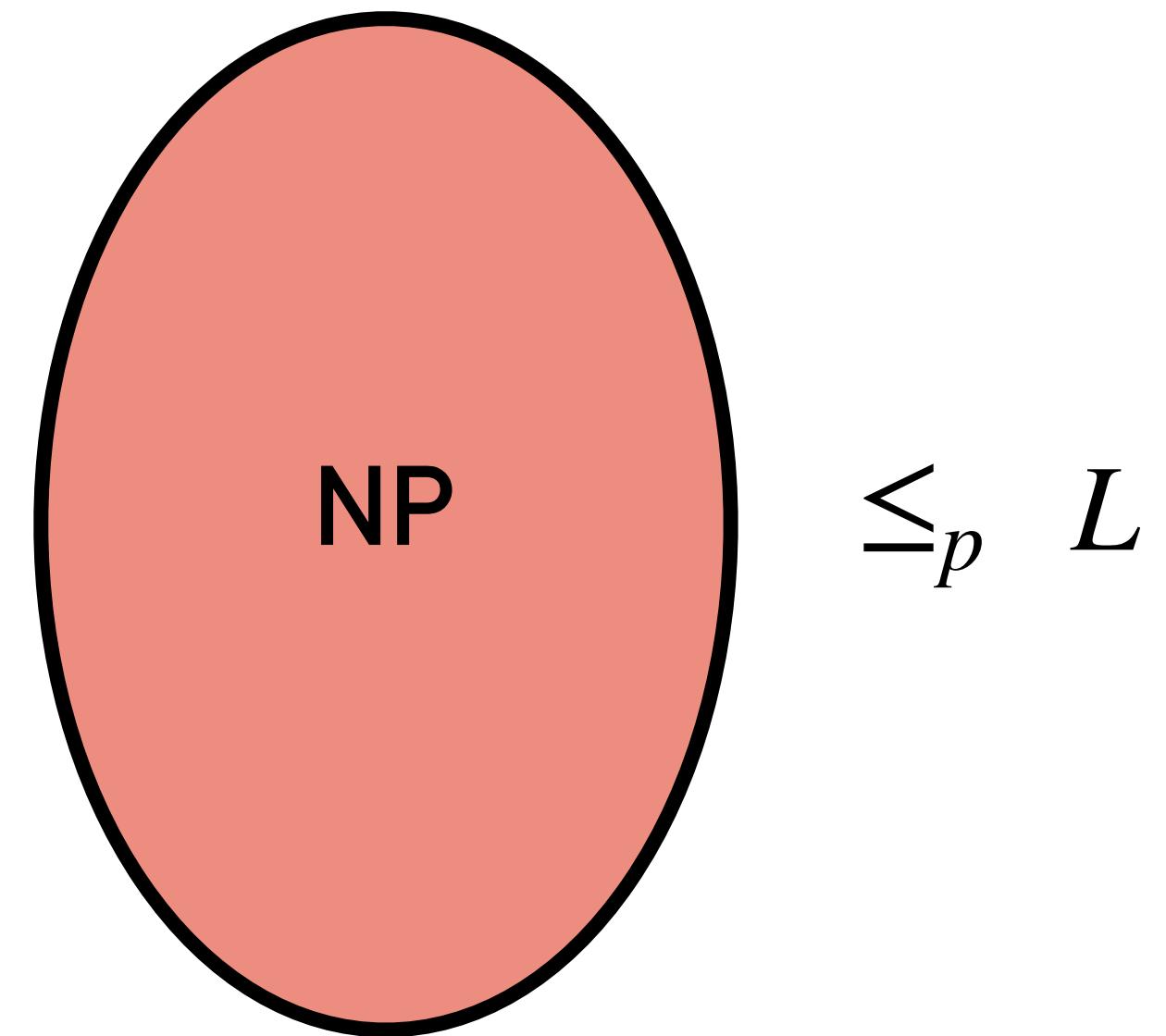
NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called **NP-hard** if $L' \leq_p L$, for every $L' \in \text{NP}$.
(2) An **NP-hard** decision problem L is called **NP-complete** if $L \in \text{NP}$.



NP-Completeness and NP-Hardness

Defn: (1) A decision problem L is called **NP-hard** if $L' \leq_p L$, for every $L' \in \text{NP}$.
(2) An **NP-hard** decision problem L is called **NP-complete** if $L \in \text{NP}$.



Observation: If L is polytime solvable, then so is every problem in **NP**.

NP-Completeness and NP-Hardness

NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then $L \in P$ if and only if $P = NP$.

NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then $L \in P$ if and only if $P = NP$.

Proof:

NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then $L \in P$ if and only if $P = NP$.

Proof: $L \in P \implies NP \subseteq P$:

NP-Completeness and NP-Hardness

Claim: If a decision problem L is NP-complete, then $L \in P$ if and only if $P = NP$.

Proof: $L \in P \implies NP \subseteq P$:

Let $L' \in NP$.

NP-Completeness and NP-Hardness

Claim: If a decision problem L is **NP-complete**, then $L \in P$ if and only if $P = NP$.

Proof: $L \in P \implies NP \subseteq P$:

Let $L' \in NP$. Then $L' \leq_p L$ because L is **NP-complete**.

NP-Completeness and NP-Hardness

Claim: If a decision problem L is **NP-complete**, then $L \in P$ if and only if $P = NP$.

Proof: $L \in P \implies NP \subseteq P$:

Let $L' \in NP$. Then $L' \leq_p L$ because L is **NP-complete**. Hence, $L' \in P$.

NP-Completeness and NP-Hardness

Claim: If a decision problem L is **NP-complete**, then $L \in P$ if and only if $P = NP$.

Proof: $L \in P \implies NP \subseteq P$:

Let $L' \in NP$. Then $L' \leq_p L$ because L is **NP-complete**. Hence, $L' \in P$.

$P = NP \implies L \in P$:

NP-Completeness and NP-Hardness

Claim: If a decision problem L is **NP-complete**, then $L \in P$ if and only if $P = NP$.

Proof: $L \in P \implies NP \subseteq P$:

Let $L' \in NP$. Then $L' \leq_p L$ because L is **NP-complete**. Hence, $L' \in P$.

$P = NP \implies L \in P$:

$L \in NP$ because it is **NP-complete**.

NP-Completeness and NP-Hardness

Claim: If a decision problem L is **NP-complete**, then $L \in P$ if and only if $P = NP$.

Proof: $L \in P \implies NP \subseteq P$:

Let $L' \in NP$. Then $L' \leq_p L$ because L is **NP-complete**. Hence, $L' \in P$.

$P = NP \implies L \in P$:

$L \in NP$ because it is **NP-complete**. Therefore, $L \in P$.

NP-Completeness and NP-Hardness

Claim: If a decision problem L is **NP-complete**, then $L \in P$ if and only if $P = NP$.

Proof: $L \in P \implies NP \subseteq P$:

Let $L' \in NP$. Then $L' \leq_p L$ because L is **NP-complete**. Hence, $L' \in P$.

$P = NP \implies L \in P$:

$L \in NP$ because it is **NP-complete**. Therefore, $L \in P$.

■

Cook-Levin Theorem

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:

- 1) SAT is NP-complete.

Cook-Levin Theorem

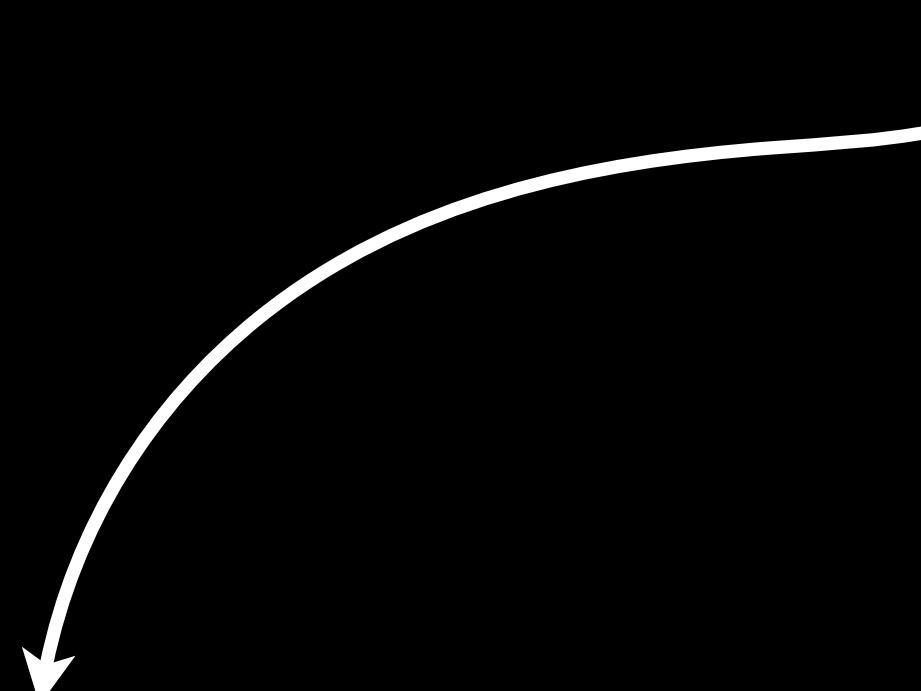
Cook-Levin Theorem [Coo71, Lev73]:

- 1) SAT is NP-complete.
- 2) $3SAT$ is NP-complete.

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:

- 1) SAT is NP-complete.
- 2) $3SAT$ is NP-complete.



$SAT = \{\phi \mid \phi \text{ is a satisfiable CNF formula}\}$

Cook-Levin Theorem

Cook-Levin Theorem [Coo71, Lev73]:

- 1) SAT is NP-complete.
- 2) $3SAT$ is NP-complete.

$SAT = \{\phi \mid \phi \text{ is a satisfiable CNF formula}\}$

$3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$

Boolean Formulas

Boolean Formulas

A **boolean formula** consists of:

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.
- Operators: AND (\wedge), OR (\vee), NOT (\neg)

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.
- Operators: AND (\wedge), OR (\vee), NOT (\neg)

Examples: $\phi_1 = u_1 \wedge \neg u_1$

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.
- Operators: AND (\wedge), OR (\vee), NOT (\neg)

Examples: $\phi_1 = u_1 \wedge \neg u_1$, $\phi_2 = (u_1 \vee u_2) \wedge (u_3 \wedge \neg u_4)$

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.
- Operators: AND (\wedge), OR (\vee), NOT (\neg)

Examples: $\phi_1 = u_1 \wedge \neg u_1$, $\phi_2 = (u_1 \vee u_2) \wedge (u_3 \wedge \neg u_4)$

Let ϕ be a boolean formula over u_1, u_2, \dots, u_n and $z \in \{0,1\}^n$:

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.
- Operators: AND (\wedge), OR (\vee), NOT (\neg)

Examples: $\phi_1 = u_1 \wedge \neg u_1$, $\phi_2 = (u_1 \vee u_2) \wedge (u_3 \wedge \neg u_4)$

Let ϕ be a boolean formula over u_1, u_2, \dots, u_n and $z \in \{0,1\}^n$:

- $\phi(z)$ denotes the value of ϕ when $u_i = z_i$.

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.
- Operators: AND (\wedge), OR (\vee), NOT (\neg)

Examples: $\phi_1 = u_1 \wedge \neg u_1$, $\phi_2 = (u_1 \vee u_2) \wedge (u_3 \wedge \neg u_4)$

Let ϕ be a boolean formula over u_1, u_2, \dots, u_n and $z \in \{0,1\}^n$:

- $\phi(z)$ denotes the value of ϕ when $u_i = z_i$.
- ϕ is **satisfiable** if $\exists z$ such that $\phi(z) = 1$. Otherwise, ϕ is **unsatisfiable**.

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.
- Operators: AND (\wedge), OR (\vee), NOT (\neg)

Examples: $\phi_1 = u_1 \wedge \neg u_1$, $\phi_2 = (u_1 \vee u_2) \wedge (u_3 \wedge \neg u_4)$

Let ϕ be a boolean formula over u_1, u_2, \dots, u_n and $z \in \{0,1\}^n$:

- $\phi(z)$ denotes the value of ϕ when $u_i = z_i$.
- ϕ is **satisfiable** if $\exists z$ such that $\phi(z) = 1$. Otherwise, ϕ is **unsatisfiable**.

Examples: ϕ_1 is unsatisfiable,

Boolean Formulas

A **boolean formula** consists of:

- Variables: u_1, u_2, \dots, u_k , where $u_i \in \{0,1\}$.
- Operators: AND (\wedge), OR (\vee), NOT (\neg)

Examples: $\phi_1 = u_1 \wedge \neg u_1$, $\phi_2 = (u_1 \vee u_2) \wedge (u_3 \wedge \neg u_4)$

Let ϕ be a boolean formula over u_1, u_2, \dots, u_n and $z \in \{0,1\}^n$:

- $\phi(z)$ denotes the value of ϕ when $u_i = z_i$.
- ϕ is **satisfiable** if $\exists z$ such that $\phi(z) = 1$. Otherwise, ϕ is **unsatisfiable**.

Examples: ϕ_1 is unsatisfiable, ϕ_2 is satisfiable as $\phi_2(z) = 1$, for $z = 1010$.

SAT and 3SAT

SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation

SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

SAT and 3SAT

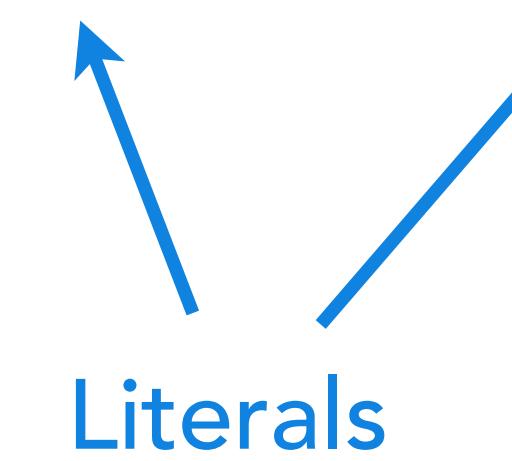
Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

Example: $(u_1 \vee \neg u_2 \vee u_3) \wedge (u_3 \vee u_2 \vee \neg u_1) \wedge (u_2 \vee \neg u_3 \vee u_4)$

SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

Example: $(u_1 \vee \neg u_2 \vee u_3) \wedge (u_3 \vee u_2 \vee \neg u_1) \wedge (u_2 \vee \neg u_3 \vee u_4)$



SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

Example: $(u_1 \vee \neg u_2 \vee u_3) \wedge (u_3 \vee u_2 \vee \neg u_1) \wedge (u_2 \vee \neg u_3 \vee u_4)$



SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

Example: $(u_1 \vee \neg u_2 \vee u_3) \wedge (u_3 \vee u_2 \vee \neg u_1) \wedge (u_2 \vee \neg u_3 \vee u_4)$

SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

Example: $(u_1 \vee \neg u_2 \vee u_3) \wedge (u_3 \vee u_2 \vee \neg u_1) \wedge (u_2 \vee \neg u_3 \vee u_4)$

SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

Example: $(u_1 \vee \neg u_2 \vee u_3) \wedge (u_3 \vee u_2 \vee \neg u_1) \wedge (u_2 \vee \neg u_3 \vee u_4)$

Definition: 1) $SAT = \{\phi \mid \phi \text{ is a satisfiable CNF formula}\}$

SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

Example: $(u_1 \vee \neg u_2 \vee u_3) \wedge (u_3 \vee u_2 \vee \neg u_1) \wedge (u_2 \vee \neg u_3 \vee u_4)$

Definition: 1) $SAT = \{\phi \mid \phi \text{ is a satisfiable CNF formula}\}$

2) $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$

SAT and 3SAT

Defn: A **CNF formula** is a boolean formula in the form of AND of ORs of variables or negation of variables.

Example: $(u_1 \vee \neg u_2 \vee u_3) \wedge (u_3 \vee u_2 \vee \neg u_1) \wedge (u_2 \vee \neg u_3 \vee u_4)$

Definition: 1) $SAT = \{\phi \mid \phi \text{ is a satisfiable CNF formula}\}$

2) $3SAT = \{\phi \mid \phi \text{ is a satisfiable 3CNF formula}\}$

A blue curved arrow points from the definition of $3SAT$ to the text 'At most 3 literals per clause'.

At most 3 literals per clause