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To understand NP-completeness we need to first learn about Reductions.
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• Variables: , where .u1, u2, …, uk ui ∈ {0,1}

• Operators: AND , OR , NOT ( ∧ ) ( ∨ ) (¬)

Boolean Formulas

Examples:  ϕ1 = u1 ∧ ¬u1

Let  be a boolean formula over  and :ϕ u1, u2, …, un z ∈ {0,1}n

•  denotes the value of  when .ϕ(z) ϕ ui = zi

•  is satisfiable if  such that . Otherwise,  is unsatisfiable.ϕ ∃z ϕ(z) = 1 ϕ

Examples:   is unsatisfiable, ϕ1  is satisfiable as , for .ϕ2 ϕ2(z) = 1 z = 1010

,  ϕ2 = (u1 ∨ u2) ∧ (u3 ∧ ¬u4)
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Defn: A CNF formula is a boolean formula in the form of AND of ORs of variables or negation
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